Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x+4y=1 nên x=1-4y (1)
ta có : x^2+4y^2≥1/5
=> x^2+4y^2-1/5 ≥0 (2)
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0
<=>20y^2 - 8y + 4/5 ≥ 0
<=>5(4y^2 - 8/5y + 4/25) ≥ 0
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng)
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5
2/ Áp dụng BĐT Bunhiacopxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+2abxy\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow bx^2+ay^2-2abxy\ge0\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\)(đúng) Dấu "=" xảy ra khi x/a=y/b
Ta có: \(\left(x+4y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)
Mà a + 4b = 1
\(\Rightarrow x^2+4y^2\ge\frac{1}{5}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{x}=\frac{2}{2y}=\frac{1}{y}\\x+4y=1\end{cases}}\Rightarrow x=y=\frac{1}{5}\)
\(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Min A = 10 khi: 2x + 1 = 0
<=> x = -1/2
Áp dụng BĐT bunhiacopxki
\(\left(1+2^2\right)\left(x^2+4y^4\right)\ge\left(x+4y\right)^2\)
<=> \(5\left(x^2+4y^2\right)\ge1\)
<=> \(x^2+4y^2\ge\dfrac{1}{5}\) (đpcm)
dấu '=' xảy ra khi x=\(\dfrac{y}{4}\) => x=\(\dfrac{13}{17}\) ;y=\(\dfrac{4}{17}\)
Bunyakovsky k được biết vs dạng đó.Ít nhất cũng phải viết 1^2 chứ
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
Tham khảo bài làm của mình : Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 8 - Học toán với OnlineMath
Ta có
\(x^2+y^2-2x-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=\)
\(\left(x-1\right)^2+\left(y-2\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) >0 => đpcm
vì x+4y=1 nên x=1-4y (1)
ta có : x^2+4y^2≥1/5
=> x^2+4y^2-1/5 ≥0 (2)
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0
<=>20y^2 - 8y + 4/5 ≥ 0
<=>5(4y^2 - 8/5y + 4/25) ≥ 0
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng)
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5
Làm gọn thôi bạn ơi! Dùng bất đẳng thức Bunyakovsky