Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+y^2=4-xy\\\left(x^2+y^2\right)^2-x^2y^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}...\\\left(4-xy\right)^2-x^2y^2=8\Leftrightarrow xy=1.\end{cases}.}}\)
\(\hept{\begin{cases}x^2+y^2=3\\x^4+y^4=7\end{cases}}\left(xy=1\right)\Leftrightarrow7.3=\left(x^4+y^4\right)\left(x^2+y^2\right)=x^6+y^6+x^2y^2\left(x^2+y^2\right)=x^6+y^6+3.1\\
\Rightarrow x^6+y^6=7.3-3=18.\)
=> \(\Rightarrow x^6+y^6+x^2y^2=18+1=19..\)
p/s: Sai sót gì thông cảm :3
Câu 1:
\(x+y=2\Rightarrow y=2-x\)
\(\Rightarrow A=x^2+2\left(2-x\right)^2+x-2\left(2-x\right)+1\)
\(A=x^2+2x^2-8x+8+x-4+2x+1\)
\(A=3x^2-5x+5\)
\(A=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{35}{12}\)
\(A=3\left(x-\frac{5}{6}\right)^2+\frac{35}{12}\ge\frac{35}{12}\)
\(\Rightarrow A_{min}=\frac{35}{12}\) khi \(x=\frac{5}{6}\) ; \(y=\frac{7}{6}\)
Câu 2:
\(x+2y=1\Rightarrow x=1-2y\)
\(\Rightarrow B=\left(1-2y\right)^2-5y^2+3\left(1-2y\right)-y-2\)
\(B=4y^2-4y+1-5y^2+3-6y-y-2\)
\(B=-y^2-11y+2\)
\(B=-\left(y^2+11y+\frac{121}{4}\right)+\frac{129}{4}\)
\(B=-\left(y+\frac{11}{2}\right)^2+\frac{129}{4}\le\frac{129}{4}\)
\(\Rightarrow B_{max}=\frac{129}{4}\) khi \(\left\{{}\begin{matrix}y=-\frac{11}{2}\\x=12\end{matrix}\right.\)
Câu 3:
Ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\Rightarrow2\left|xy\right|\le4\Rightarrow\left|xy\right|\le2\Rightarrow x^2y^2\le4\)
\(D=\left(x^2\right)^3+\left(y^2\right)^3+x^4+y^4\)
\(D=\left(x^2+y^2\right)\left[\left(x^2+y^2\right)^2-3x^2y^2\right]+\left(x^2+y^2\right)^2-2x^2y^2\)
\(D=4\left(16-3x^2y^2\right)+16-2x^2y^2\)
\(D=80-14x^2y^2\ge80-14.4=24\)
\(\Rightarrow D_{min}=24\) khi \(\left\{{}\begin{matrix}x^2=2\\y^2=2\end{matrix}\right.\)
\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)
\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)
Đặt \(a=x^4;b=y^4\)=> a+b=1
=> \(3x^8+4x^4y^4+y^8+2y^4=3a^2+4ab+b^2+2b=2\left(a^2+2ab+b^2\right)+\left(a^2-b^2+2b\right)=2\left(a+b\right)^2+\left(a-b\right)\left(a+1\right)+2b=2\left(a+b\right)^2+\left(a+b\right)=2+1=3\)