K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Phá tung cái ngoặc ra thôi mà nhỉ?

a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)

Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c

9 tháng 9 2019

Câu đấy là \(\left(2x-5\right)\) mà bạn. tth

14 tháng 7 2017

1. \(3x^2\left(ax^2-2bx-3c\right)=3x^2\left(x^2-4x+27\right)\)

\(\Rightarrow\hept{\begin{cases}a=1\\-2b=-4\\-3c=27\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=-9\end{cases}}}\)

2. \(\left(x^2+cx+2\right)\left(ax+b\right)=x^3+x^2-2\)

\(\Rightarrow ax^3+bx^2+acx^2+bcx+2ax+2b=x^3+x^2-2\)

\(\Rightarrow ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3+x^2-2\)

\(\Rightarrow\hept{\begin{cases}a=1\\b+ac=1\\2b=-2\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b+ac=1\\b=-1\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-1\\c=2\end{cases}}}\)

Câu còn lại tương tự  

9 tháng 9 2019

Tiểu biểu một câu thôi, mấy câu còn lại tương tự. 

Tư tưởng là phân tích vế trái để sử dụng đồng nhất hệ số.

b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3+x^2\left(-a+b\right)-x\left(a+b\right)-b=ax^3+c\cdot x^2-0\cdot x-1\)

Đồng nhất hệ số:

\(\hept{\begin{cases}-a+b=c\\a+b=0\\b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)

Các câu còn lại tương tự.

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)