K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

\(\left(x^2+y^2\right)\left(1+9\right)\ge\left(x+3y\right)^2\ge1\)

\(=>minA=\frac{1}{10}<=>\frac{x}{1}=\frac{y}{3}\)và \(x+3y=1\) hay \(10x=1\) <=> \(x=\frac{1}{10}\) => \(y=\frac{3}{10}\)

14 tháng 3 2016

1=<x+3y=<căn(10(x^2+y^2))

=>x^2+y^2=>1/10

4 tháng 4 2016

dễ mà

=>x >=1-3y.thay vào bt A= x^2+y^2 >= (1-3y)^2+y^2

đến đây bạn tự giải tiếp nha

17 tháng 3 2016

x=0;y=1/3

=>A=1/9

22 tháng 3 2016

theo buniacópky

1=<x+3y=<căn(10*(x^2+y^2))

=>x^2+y^2>=1/10

13 tháng 2 2016

dùng bunia nha bạn

14 tháng 2 2016

đáp án là 0.25

19 tháng 3 2016

GTNN bằng 5,5 khi y=-3/4

19 tháng 3 2016

Min =5,5 ..check mk nhá

26 tháng 3 2022

\(A=x^2+3xy+4y^2\ge4y^2+3y+1\)

\(=\left(4y^2+\frac{2.2y.3}{4}+\frac{9}{16}\right)+\frac{7}{16}\)

\(=\left(2y+\frac{3}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)

NV
25 tháng 3 2022

\(A=\dfrac{7x^2}{16}+\left(\dfrac{9x^2}{16}+3xy+4y^2\right)\)

\(A=\dfrac{7x^2}{16}+\left(\dfrac{3x}{4}+2y\right)^2\ge\dfrac{7x^2}{16}\ge\dfrac{7.1^2}{16}=\dfrac{7}{16}\)

\(A_{min}=\dfrac{7}{16}\) khi \(\left(x;y\right)=\left(1;-\dfrac{3}{8}\right)\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?