Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có: \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right]=0\)
\(\Leftrightarrow x+y=-2\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=-\frac{2}{xy}\le-\frac{2}{\frac{\left(x+y\right)^2}{4}}=-2\)
Dấu '=' xảy ra khi: \(x=y=-1\)
Vậy:....
Bạn Nguyễn Đức Thắng làm đúng rồi. Tuy nhiên bạn làm tắt quá.
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4\)
= \(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y\right)+2\)
= \(\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)\)
= \(\left[\left(x+1\right)+\left(y+1\right)\right]\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)\)
= \(\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)\)
= \(\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]\)
= \(\left(x+y+2\right)\left[\left(x+1\right)^2-2.\left(x+1\right).\frac{1}{2}\left(y+1\right)+\frac{1}{4}\left(y+1\right)^2+\frac{3}{4}\left(y+1\right)^2+1\right]\)
= \(\left(x+y+2\right)\left\{\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1\right\}\)
Biểu thức trên bằng 0 khi x + y + 2 = 0, lý luận tiếp theo như của bạn Nguyen Duc Thang
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3+3x^2+3x+1+y^3+3y^2+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
\(\Leftrightarrow x+y+2=0\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
\(P=-\left(\frac{1}{-x}+\frac{1}{-y}\right)\le-\frac{4}{-x-y}=-2\)
\(P_{max}=-2\) khi \(x=y=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~