K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

Áp dụng BĐT Bu nhi a có: (x + y)2 \(\le\) (12 + 12).(x2 + y2)

=> (x + y) \(\le\) 4.(x\(\sqrt{x}\).\(\sqrt{x}\) + y.\(\sqrt{y}\).\(\sqrt{y}\) )2  \(\le\) 4. (x3 + y3).(x + y) = 8.(x+ y)

Vì x3 + y= 2 khác 0 nên x + y khác 0 => (x+ y)\(\le\) 8 => x+ y \(\le\) 2

Dẫu "=" xảy ra khi x = y =1

30 tháng 7 2016

Ta có B=\(2\left(x+y\right)\left(x^2-xy+y^2\right)+3x^2+3y^2+10xy\)

\(B=-8x^2+8xy-8y^2+3x^2+3y^2+10xy\)

\(-B=5x^2-18xy+5y^2>=\frac{5}{2}\left(x+y\right)^2-18\left(\frac{x+y}{2}\right)^2=40-72\)=-32

hay b>=32 dấu bằng xảy ra tự tính

NV
18 tháng 7 2020

\(Q=2020-\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)\le2020-\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2020-\frac{x+y+z}{2}=\frac{4037}{2}\)

\(Q_{max}=\frac{4037}{2}\) khi \(x=y=z=1\)

27 tháng 6 2020

Áp dụng bđt cauchy schwarz dạng engel ta có :

\(VP=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\le\frac{\left(x+y+z\right)^2}{3}=3\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy \(Max_S=3\)khi \(x=y=z=1\)