K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho x3=2p+1 , x thuộc N

Tìm  x

1
17 tháng 7 2016

điều kiện của p đâu bạn?

14 tháng 9 2017

Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x 3 = 2p + 1 nên x 3 cũng là một số lẻ, suy ra x là số lẻ

Gọi x = 2k + 1 (k Є N). ta có

x 3 = 2p + 1 ó ( 2 k   +   1 ) 3 = 2p + 1

 

⇔   8 k 3   +   12 k 2   +   6 k   +   1   =   2 p   +   1   ⇔   2 p   =   8 k 3   +   12 k 2   +   6 k     ⇔   p   =   4 k 3   +   6 k 2   +   3 k   =   k ( 4 k 2   +   6 k   +   3 )

Mà p là số nguyên tố nên k = 1 => x = 3

Vậy số cần tìm là x = 3

Đáp án cần chọn là: D

\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(x^2-xy+y^2\right)-3\left(1-2xy\right)\)

\(=2x^2-2xy+2y^2-3+6xy\)

\(=2x^2+4xy+2y^2-3\)

23 tháng 9 2021

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)

24 tháng 11 2021

gấp

 

Câu 1:

b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)

\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)

c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)

Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)

\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)

\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)

\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)

\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)