\(x^3-y^3-z^3=3xyz\) tính giá trị của biểu thức:

\(P=\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)

\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)

2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)

3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)

\(=\dfrac{x+y+z}{2}\)

6 tháng 10 2017

\(A=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=0\)

<><><>

\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)

\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)

\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)

\(=-1\)

<><><>

\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)

\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)

\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)

\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)

\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)

\(=0\)

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

20 tháng 11 2017

Rút gọn phân thứcRút gọn phân thứcRút gọn phân thứcRút gọn phân thứcRút gọn phân thức

20 tháng 11 2017

Rút gọn phân thức

b: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=\dfrac{a+b+c}{abc}=0\)

c: \(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(x-z\right)\left(y-z\right)}-\dfrac{x}{\left(x-z\right)\left(x-y\right)}\)

\(=\dfrac{y\left(x-z\right)-z\left(x-y\right)-x\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+zy-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Câu a:

Xét tử số:

\(x^3-y^3+z^3+3xyz=(x-y)^3+3xy(x-y)+z^3+3xyz\)

\(=(x-y)^3+z^3+3xy(x-y+z)\)

\(=(x-y+z)[(x-y)^2-z(x-y)+z^2]+3xy(x-y+z)\)

\(=(x-y+z)(x^2+y^2+z^2-2xy-xz+yz)+3xy(x-y+z)\)

\(=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)

Xét mẫu số:

\((x+y)^2+(y+z)^2+(z-x)^2\)

\(x^2+2xy+y^2+y^2+2yz+z^2+z^2-2zx+x^2\)

\(2(x^2+y^2+z^2+xy+yz-xz)\)

Do đó: \(\frac{x^3-y^3+z^3+3xyz}{(x+y)^2+(y+z)^2+(z-x)^2}=\frac{x-y+z}{2}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Câu b:

Xét tử số:

\((x^2-y)(y+1)+x^2y^2-1\)

\(=x^2y+x^2-y^2-y+x^2y^2-1\)

\(=(x^2y-y)+(x^2-1)+(x^2y^2-y^2)\)

\(=y(x^2-1)+(x^2-1)+y^2(x^2-1)=(x^2-1)(y^2+y+1)\)

Xét mẫu số:
\((x^2+y)(y+1)+x^2y^2+1\)

\(=x^2y+x^2+y^2+y+x^2y^2+1\)

\(=(x^2y+y)+(x^2+1)+(x^2y^2+y^2)\)

\(=y(x^2+1)+(x^2+1)+y^2(x^2+1)\)

\(=(x^2+1)(y+1+y^2)\)

Do đó:

\(\frac{(x^2-y)(y+1)+x^2y^2-1}{(x^2+y)(y+1)+x^2y^2+1}=\frac{(x^2-1)(y^2+y+1)}{(x^2+1)(y^2+y+1)}=\frac{x^2-1}{x^2+1}\)

17 tháng 11 2016

\(x^3+y^3+z^3=3xyz\)

\(x^3+y^3+z^3-3xyz=0\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)

\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)

x = y = z

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2^3\)

\(=8\)

1 tháng 3 2017

Làm sao để ra được dòng thứ 3 ak??