Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/y = y/z = z/t = k
=> x/y . y/z . z/t = x/t k^3 (1)
Có x/y = y/z = z/t = k = x + y + z/y + z + t(t/c dãy tỉ số bằng nhau)
=> x^3/y^3 + y^3/z^3 + z^3/t^3 = x^3 + y^3 + z^3/y^3 + z^3 + t^3 = k^3 (2)
Từ (1) và (2) => x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t = k^3
Vậy x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{1}{3}x=-2t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{x}{-2}=\dfrac{t}{\dfrac{1}{3}}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}=\dfrac{x+y+z-2t}{2+3+4-2\cdot\dfrac{-1}{3}}=\dfrac{4}{\dfrac{29}{3}}=\dfrac{12}{29}\)
Do đó: x=24/29; y=36/29; z=48/29; t=-4/29
\(\dfrac{x}{2}+\dfrac{y}{3}-z+t=\dfrac{12}{29}+\dfrac{12}{29}-\dfrac{48}{29}+\dfrac{-4}{29}=-\dfrac{28}{29}\)
a,-200 x10 t10z3
b,\(\frac{-5}{4}\)x11 y5 z4
c,\(\frac{2}{15}\)x6 y6 z9
d,\(\frac{1}{7}\)x10 y6 z7
e,-4z6 y10 z6
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\)\(=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}\)
\(=\frac{x+y+z-t-3}{6}=\frac{1-3}{6}=-\frac{1}{3}\)
=> \(x-1=-1;2y-1=-\frac{4}{3};z+2=-\frac{5}{3};y+t+3=-2\)
=> \(x=0;y=-\frac{1}{6};z=-\frac{11}{3};t=-\frac{29}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)
Vì \(\frac{x^3+y^3+z^3}{y^3+z^3+t^3}\Leftrightarrow\left(\frac{x+y+z}{y+z+t}\right)^3\)
\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}\) (đpcm)