Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)
Đặt \(N=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)
(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là \(x^2+y^2+z^2-xy-yz-zx\) nhé!
\(x^2+y^2+z^2=xy+yz+xz\)
\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì mũ chẵn luôn lớn hơn hoặc bằng 0
\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)
\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)
\(\Rightarrow3x^{2015}=3^{2016}\)
\(\Rightarrow x^{2015}=3^{2015}\)
\(\Rightarrow x=3\)
Vậy \(x=y=z=3\)
Thay x = 0; y = -z = 1, thỏa mãn đề bài nhưng:
02016 + 12016 + (-1)2016 không bằng ( 0 + 1 - 1)2016
=> xem lại đề.
hơi dài mà lười nên mình nói cách làm nha :P
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)
bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)
tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự
quy đồng rồi tính ra = 0 là được
\(E=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz.z}{zx+xyz.z+xyz}=\frac{1}{yz+y+1}+\frac{y}{yz+y+1}+\frac{yz}{1+yz+y}=\frac{1+y+yz}{1+y+yz}=1\)
Xin lỗi mk chưa học tới bài này.Bạn vào câu hỏi tương tự thử có k.
\(3.\)
Ta có:
\(x^2-9x-6\sqrt{x}+34=0\)
\(\Leftrightarrow\) \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)
\(\Leftrightarrow\) \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\) \(\left(3\right)\)
Mà \(\left(x-5\right)^2\ge0;\) \(\left(\sqrt{x}-3\right)^2\ge0\) với \(x\in R\)
nên \(\left(3\right)\) \(\Leftrightarrow\) \(\left(x-5\right)^2=0;\) và \(\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow\) \(x-5=0;\) và \(\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=5;\) và \(x=9\)
Thay \(x=5\) vào vế trái của phương trình \(\left(3\right)\), ta được:
\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\) (vô lý!)
Tương tự với \(x=9\), ta cũng có điều vô lý như ở trên.
Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình \(S=\phi\)
\(1.\) Đặt biến phụ.
\(2.\) Biến đổi phương trình tương đương:
\(\left(2\right)\) \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)
\(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)
\(\Leftrightarrow\) \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)
\(\Leftrightarrow\) \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
Vì \(\left(x+y+1\right)^2\ge0;\) \(\left(y+z\right)^2\ge0;\) \(\left(z-2016\right)^2\ge0\) với mọi \(x,y,z\in R\)
Do đó, \(\left(x+y+1\right)^2=0;\) \(\left(y+z\right)^2=0;\) và \(\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(x+y+1=0;\) \(y+z=0;\) và \(z-2016=0\)
\(\Leftrightarrow\) \(x=-y-1;\) \(y=-z;\) và \(z=2016\)
\(\Leftrightarrow\) \(x=2015;\) \(y=-2016;\) và \(z=2016\)
Ta có: x2+y2+z2=xy+yz+zx (gt)
\(\Leftrightarrow\)2x2+2y2+2z2=2xy+2yz+2zx
\(\Leftrightarrow\)x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0
\(\Leftrightarrow\)(x-y)2+(y-z)2+(z-x)2=0
\(\Leftrightarrow\)x=y,y=z,z=x
\(\Leftrightarrow\)x=y=z
Khi đó:x2016+y2016+z2016=32017
\(\Leftrightarrow\)3.x2016=32017
\(\Leftrightarrow\)x2016=32016
\(\Leftrightarrow\)x=\(\pm\)3
Vậy:x=y=z=3 hoặc x=y=z=-3
Ta có : \(x^2+y^2+z^2=xy+yz+xz\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2017}\)
\(x^{2016}=y^{2016}=z^{2016}=\frac{3^{2017}}{3}=3^{2016}\)
\(\Rightarrow x=y=z=\sqrt[2016]{3^{2016}}=3\)