K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6

          (x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0

          (x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0

Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0

            x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0

            x^2 -1=0,y^2-1=0 và z^2-1=0

            x^2 = 1.y^2 =1 và z^2 =1

Do đó: x^2018 = y^2018 =z^2018 =1

Vậy A =x^2018 +y^2018 +z^2018 =3           

13 tháng 5 2018

Hỏi đáp Toán

13 tháng 5 2018

các bạn giải hộ mik vs khó quá

NV
27 tháng 10 2020

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Vậy P có thể nhận các giá trị \(P=\left\{-1;1;3\right\}\)

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

1 tháng 8 2018

TÔI CHƯA GIẢI ĐƯỢC