\(x^2+y^2+z^2=1\)

tìm gtln của : \(x^3+y^3+z^3-3xyz\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

(Thử sức với phương pháp \(p,q,r\) xem nào!)

Đặt \(p=x+y+z,q=xy+yz+zx,r=xyz\).

Khi đó \(p^2-2q=1\) nên \(q=\frac{p^2-1}{2}\).

Biểu thức cần tìm max là \(S=x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Viết lại dưới dạng \(S=p\left(1-q\right)=p-\frac{p\left(p^2-1\right)}{2}=-\frac{p^3}{2}+\frac{3p}{2}\)

-----

Nếu có thêm giả thiết \(x,y,z\) không âm thì:

\(2S=-\left(p^3-3p\right)=-\left(p-1\right)^2\left(p+2\right)+2\le2\) và đẳng thức xảy ra tại \(p=1\).

Nếu ko có giả thiết \(x,y,z\) không âm thì xin thưa là đề sai.

18 tháng 1 2017

Em nghĩ là có kể cả khi không giả thiết x,y,z không âm

22 tháng 7 2016

$x^{2} + y^{2} + z^{2} = 1$ , tìm GTLN $x^{3} + y^{3} + z^{3} - 3xyz$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

16 tháng 6 2020

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

16 tháng 6 2020

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3