\(x^2+y^2=2017\). Tìm GTLN; GTNN của P = \(xy+x+y\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

\(P=xy+x+y\le\dfrac{x^2+y^2}{2}+\sqrt{2\left(x^2+y^2\right)}\)

\(=\dfrac{2017}{2}+\sqrt{2.2017}=\dfrac{2017}{2}+\sqrt{4034}\)

NV
26 tháng 2 2019

\(A=\dfrac{x^2-xy+2y^2}{1}=\dfrac{x^2-xy+2y^2}{x^2+xy+y^2}\)

Với \(y=0\Rightarrow A=1\)

Với \(y\ne0\), chia cả tử và mẫu của vế phải cho \(y^2\Rightarrow A=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}+2}{\left(\dfrac{x}{y}\right)^2+\dfrac{x}{y}+1}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow A=\dfrac{a^2-a+2}{a^2+a+1}\Leftrightarrow A.a^2+A.a+A=a^2-a+2\)

\(\Leftrightarrow\left(A-1\right)a^2+\left(A+1\right)a+A-2=0\)

\(\Delta=\left(A+1\right)^2-4\left(A-1\right)\left(A-2\right)\ge0\)

\(\Leftrightarrow-3A^2+14A-7\ge0\Rightarrow\dfrac{7-2\sqrt{7}}{3}\le A\le\dfrac{7+2\sqrt{7}}{3}\)

Vậy \(\left\{{}\begin{matrix}A_{max}=\dfrac{7+2\sqrt{7}}{3}\\A_{min}=\dfrac{7-2\sqrt{7}}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Lời giải:

Vì $x^2+y^2+xy=1$ nên \(A=x^2-xy+2y^2=\frac{x^2-xy+2y^2}{x^2+y^2+xy}\)

\(\Rightarrow A(x^2+y^2+xy)=x^2-xy+2y^2(1)\)

\(\Leftrightarrow x^2(A-1)+x(Ay+y)+(Ay^2-2y^2)=0(*)\)

Xét $A\neq 1$ , ta coi $(*)$ là pt bậc 2 ẩn $x$. Vì đẳng thức $(1)$ tồn tại nên pt $(*)$ có nghiệm

\(\Rightarrow \Delta=(Ay+y)^2-4(Ay^2-2y^2)(A-1)\geq 0\)

\(\Leftrightarrow -3A^2y^2+14Ay^2-7y^2\geq 0\)

\(\Leftrightarrow -3A^2+14A-7\geq 0\)

\(\Leftrightarrow \frac{7-2\sqrt{7}}{3}\leq A\leq \frac{7+2\sqrt{7}}{3}\). So sánh với giá trị $1$ cuối cùng ta thấy \(A_{\min}=\frac{7-2\sqrt{7}}{3}; A_{\max}=\frac{7+2\sqrt{7}}{3}\)

1 tháng 4 2018

Ta có:

\(GT\Leftrightarrow2-3x^2=2\left(y+z\right)^2-2yz\ge2\left(y+z\right)^2-\dfrac{1}{4}.2\left(y+z\right)^2=\dfrac{3\left(y+z\right)^2}{2}\)(AM-GM)

\(\Rightarrow4-6x^2\ge3\left(y+z\right)^2\Leftrightarrow4\ge3\left[2x^2+\left(y+z\right)^2\right]\)

Áp dụng BĐT bunyakovsky: \(\left(1+2\right)\left[2x^2+\left(y+z\right)^2\right]\ge2\left(x+y+z\right)^2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Vậy \(P_{Min}=-\sqrt{2}\) khi \(x=y=z=\dfrac{-\sqrt{2}}{3}\);\(P_{Max}=\sqrt{2}\)khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)

13 tháng 11 2018

1

do x,y bình đẳng như nhau giả sử \(x\ge y\)

Ta có:x2018+y2018=2

mà \(x^{2018}\ge0,y^{2018}\ge0\)

\(\Rightarrow x^{2018}+y^{2018}\ge0\)

Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)

Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)

\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)

\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)

Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)

Vậy........................

13 tháng 11 2018

x,y có nguyên đâu mà bạn giải như vậy

\(A=x^2+y^2-xy \)
    \(=\left(x+y\right)^2-2xy-xy\)
    \(=\left(x+y\right)^2-3xy\)
Vì x+y=4xy nên A=4xy-3xy=xy
Vì x,y\(\le1\)nên xy\(\le1\)
\(\Rightarrow A\le1\)
\(\Rightarrow\)GTLN của A là 1.
Dấu = xảy ra\(\Leftrightarrow\)x=y=1.

Mình chỉ làm được có vậy,mong bạn thông cảm.