K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Đề không thiếu. Ở đây x^2, y^2 rồi.

mình không côsi là cô của ai

​x^2+y^2-2xy=(x-y)^2>=0 mọi xy

=>20-2xy​>=0 mọi xy

​=>xy<=10

​P=(x^2+y^2)/xy=2/xy>=2/10=1/5

28 tháng 12 2016

đề thiếu : phải có x,y > 0

áp dụng bđt Cô-si ta có: x^2+y^2 >= 2 \(\sqrt{ }\)(xy)^2=2xy

P=1/x^2 + 1/y^2 = (x^2+y^2)/(xy)^2 >= 2xy/(xy)^2=2/xy (1)

dấu "=" xảy ra <=> x^2=y^2,mà x^2+y^2=20 => 2x^2=20=>x^2=10=>x = căn 10 => y= căn 10

Thay x=y=căn 10 vào (1) ta có P >= 2/10=1/5

Vậy minP=1/5

(ko chắc) 

16 tháng 1 2018

\(A=-x^2-y^2+xy+2x+2y\\ =-2x^2-2y^2+2xy+4x+4y\\ =\left(-x^2+2xy-y^2\right)+\left(-x^2+4x-4\right)+\left(-y^2+4y-4\right)+8\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+8\\ =-\left(x-y\right)^2-\left(x-2\right)^2-\left(y-2\right)^2+8\\ =-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\\ \left(x-y\right)^2\ge0\forall x,y;\left(x-2\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y\\ \Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]\le0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\le8\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-2=0\\y-2=0\end{matrix}\right.\\ \Leftrightarrow x=y=2\)

Vậy \(MAX_A=8\text{ khi }x=y=2\)

18 tháng 2 2019

do nghiệm của pt -2x2-2y2+2xy+4x+4y=0 không phải là nghiệm của

pt -x2-y2+xy+2x+2y= 0 nên MAX A KHÔNG THỂ BÀNG 8 KHI x=y=2

7 tháng 3 2021

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

7 tháng 3 2021

tks nguoi ae

4 tháng 9 2021

undefined

22 tháng 11 2021

x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1

Tính P = x + y + z

 
19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)