\(x^2+y^2=1\)

Tìm Min, Max của: \(F=x+y\sqrt{3}\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

25 tháng 12 2018

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

25 tháng 12 2018

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

NV
24 tháng 11 2019

Theo Viet đảo, x và y là nghiệm của pt:

\(t^2-\left(m+1\right)t+m^2-2m+2=0\)

Để hệ đã cho có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Rightarrow-3m^2+10m-7\ge0\Rightarrow1\le m\le\frac{7}{3}\)

Khi đó ta có: \(F=x^2+y^2=\left(x+y\right)^2-2xy\)

\(F=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

Xét hàm \(f\left(m\right)=-m^2+6m-3\) trên \(\left[1;\frac{7}{3}\right]\)

\(-\frac{b}{2a}=3\notin\left[1;\frac{7}{3}\right]\) ; \(f\left(1\right)=2\) ; \(f\left(\frac{7}{3}\right)=\frac{50}{9}\)

\(\Rightarrow F_{max}=\frac{50}{9}\) khi \(m=\frac{7}{3}\)

\(F_{min}=2\) khi \(m=1\)

2 tháng 10 2017

Áp dụng bđt AM-GM có:

\(1+\dfrac{y}{z}\ge2\sqrt{\dfrac{y}{z}};1+\dfrac{z}{x}\ge2\sqrt{\dfrac{z}{x}}\)

Dễ dàng suy ra: \(M\ge\dfrac{x}{y}+2\sqrt{2}\cdot\sqrt[4]{\dfrac{y}{z}}+3\sqrt[3]{2}\cdot\sqrt[6]{\dfrac{z}{x}}=\dfrac{1}{\sqrt{2}}\left(\dfrac{x}{y}+4\sqrt[4]{\dfrac{y}{z}}+6\sqrt[6]{\dfrac{z}{x}}\right)+\left(1-\dfrac{1}{\sqrt{2}}\right)\cdot\dfrac{x}{y}+\left(3\sqrt[3]{2}-3\sqrt{2}\right)\cdot\sqrt[6]{\dfrac{z}{x}}\)

Theo AM-GM có: \(\dfrac{1}{\sqrt{2}}\left(\dfrac{x}{y}+4\sqrt[4]{\dfrac{y}{z}}+6\sqrt[6]{\dfrac{z}{x}}\right)\ge\dfrac{1}{2}\cdot11\sqrt[11]{\dfrac{x}{y}\cdot\dfrac{y}{z}\cdot\dfrac{z}{x}}=\dfrac{11}{\sqrt{2}}\) (1)

Theo đề: \(x\ge max\left\{y,z\right\}\) ta có: \(\left\{{}\begin{matrix}\dfrac{x}{y}\ge1\\\dfrac{z}{x}\le1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left(1-\dfrac{1}{\sqrt{2}}\right)\cdot\dfrac{x}{y}\ge1-\dfrac{1}{\sqrt{2}}\left(2\right)\\\left(3\sqrt[3]{2}-3\sqrt{2}\right)\cdot\sqrt[6]{\dfrac{z}{x}}\ge3\sqrt[3]{2}-3\sqrt{2}\left(3\right)\end{matrix}\right.\)

Cộng theo vế bđt (1), (2) ,(3) có:\(A\ge\dfrac{11}{\sqrt{2}}+1-\dfrac{1}{\sqrt{2}}+3\sqrt[3]{2}-3\sqrt{2}=1+2\sqrt{2}+3\sqrt[3]{2}\)

Xảy ra khi \(x=y=z\)

3 tháng 10 2017

Lâu lâu k đi khủng bố tinh thần :3

Ta đi cm \(1+2\sqrt{2}+3\sqrt[3]{2}\) là Min nhé

\(M'(x)=\dfrac{1}{y}+\dfrac{-\dfrac{z}{x^2}}{\sqrt[3]{\left(1+\dfrac{z}{x}\right)^2}}=\dfrac{x^2\sqrt[3]{\left(1+\dfrac{z}{x}\right)^2}-yz}{y\sqrt[3]{\left(1+\dfrac{z}{x}\right)^2}}\ge0\)

Vì vậy ta cần xét 2 trường hợp

*)\(y\ge z;x=y\). Đặt \(\dfrac{y}{z}=t\). Khi đó \(t\ge 1\) và cần cm \(f(t)\ge 0\)

\(f(t)=2\sqrt{1+t}+3\sqrt[3]{1+\dfrac{1}{t}}-2\sqrt{2}-3\sqrt[3]{2}\)

Thật vậy \(f'(t)=\dfrac{1}{\sqrt{1+t}}+\dfrac{-\dfrac{1}{t^2}}{\sqrt[3]{1+\dfrac{1}{t}}}=\dfrac{\sqrt[3]{t^4(t+1)^2}-\sqrt{1+t}}{\sqrt{1+t}\sqrt[3]{t^4(t+1)^2}}>0\)

\(\Rightarrow f(t)\ge f(1)=0\)

*)\(z\ge y ;x=z\). Khi đó \(t\ge 1\) và ta cm \(g(t)\ge 0\)

\(g(t)=t+2\sqrt{1+\dfrac{1}{t}}-1-2\sqrt{2}\)

\(g'(t)=1+\dfrac{-\dfrac{1}{t^2}}{\sqrt{1+\dfrac{1}{t}}}=\dfrac{\sqrt{t^3(t+1)}-1}{\sqrt{t^3(t+1)}}>0\)

Tức là \(g(t)\geq g(1)=0\)

10 tháng 10 2019

undefinedundefinedundefined

6 tháng 10 2017

a. R / \(\left\{-2\right\}\)

b. R / \(\left\{4;-1\right\}\)

c. R ( mẫu luôn > 0 )

d. \(\left(2;+\infty\right)\)

6 tháng 10 2017

e. \(\left(-\infty;\dfrac{5}{6}\right)\)

f. \(\left(2;+\infty\right)\)

g. \(\left(1;3\right)\)

h. \(\left(5;+\infty\right)\)

i. \(\left(1;+\infty\right)\)

k. \(\left(-\infty;2\right)\)

l. R/\(\left\{\pm3\right\}\)

m. \(\left(-2;+\infty\right)/\left\{3\right\}\)