K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)

\(=2\left[1-3x^2y^2\right]-3\left[1-2x^2y^2\right]\)

=2-3=-1

11 tháng 6 2018

\(=x^2+2x-3x-6+x^2-1-x^2+\frac{1}{2}x+\frac{1}{2}x-\frac{1}{4}-x^2\)

\(=\left(x^2+x^2-x^2-x^2\right)+\left(2x-3x+\frac{1}{2}x+\frac{1}{2}x\right)+\left(-6-1-\frac{1}{4}\right)\)

\(=\frac{-29}{4}\)

Vậy...

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

11 tháng 6 2018

\(=x^{2n}-2x^n+x^n-2-x^{2n}+x^n+2018\)

\(=\left(x^{2n}-x^{2n}\right)+\left(-2x^n+x^n+x^2\right)+\left(-2+2018\right)\)

\(=2016\)

Vậy BT trên k phụ thuộc vào biến

11 tháng 6 2018

\(=8X^2+2X-12X-3-\left(4X-4\right)\left(2X-1\right)-2X+5\)

\(=8X^2+2X-12X-3-\left(8X^2-4X-8X+4\right)-2X+5\)

\(=8X^2-10X-3-8X^2+4X+8X-4-2X-5\)

\(=-12\left(ĐPCM\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

26 tháng 9 2016

Các bạn ơi giúp minh đi chiêu mai mình học rồi khocroikhocroi

Cảm ơn các bạn rất nhiều