K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

hay

30 tháng 11 2019

mày làm đi

15 tháng 1 2019

Bài 2 :

a) \(P=x^2+y^2+xy+x+y\)

\(2P=2x^2+2y^2+2xy+2x+2y\)

\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)

\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)

Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc

17 tháng 1 2019

@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!

17 tháng 11 2023

\(x\) + 2y = 8

\(2y\)        = 8 - \(x\)

 y        = \(\dfrac{8-x}{2}\)

  y =  - \(\dfrac{x}{2}\) + 4

Thay y = - \(\dfrac{x}{2}\) + 4 vào biểu thức B = \(xy\) ta có: 

B = \(x\).(-\(\dfrac{x}{2}\) + 4)

B = - \(\dfrac{x^2}{2}\) + 4\(x\)

B = -\(\dfrac{1}{2}\). (\(x^2\)  - 8\(x\)  + 16)  +  8 

B = - \(\dfrac{1}{2}\).(\(x\) - 4)2 + 8

Vì  \(\dfrac{1}{2}\).(\(x\) - 4)2 ≥ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\) - 4)2 ≤ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\)  - 4)2 + 8 ≤ 8

Dấu bằng xảy ra khi:  \(x\) - 4 = 0 ⇒ \(x\) = 4; thay \(x\) = 4 vào biểu thức:

y = - \(\dfrac{1}{2}\) \(x\)+ 4 ta có y = - \(\dfrac{4}{2}\) + 4 = 2

Vậy giá trị lớn nhất của B là 8 xảy ra khi \(x\) = 4; y = 2

 

 

 

26 tháng 3 2018

\(\text{Đặt: }A=-x^2-y^2+xy+2x+2y.\)

    \(\Rightarrow2A=-2x^2-2y^2+2xy+4x+4y=-\left(x^2-4x+4\right)-\left(y^2-y+4\right)-\left(x^2-2xy+y^2\right)+8\)

\(=8-\left(x-2\right)^2-\left(y-2\right)^2-\left(x-y\right)^2\)

24 tháng 8 2016

(x2/2 - xy + y2 /2) + (x2 /2 - 2x + 2) + (y/2 - 2y + 2) - 4 = (x/√2 - y √2)+ (x/√2 - √2)+ (y/√2 - √2)2 - 4 >= -4

Vậy GTNN là -4 đạt được khi x = y = 2

24 tháng 8 2016

Tìm GTNN chớ bạnbạn