K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

\(x+2y=8\Leftrightarrow x=8-2y\Rightarrow B=xy=\left(8-2y\right)y=-2\left(y^2-4y+4\right)+8=-2\left(y-2\right)^2+8\le8.\)

B max = 8 khi y =2 ; x = 4 .

7 tháng 10 2018

a) \(a+b=2\)

=>  \(b=2-a\)

\(A=a^2+\left(2-a\right)^2=2a^2-4a+4=\left(\sqrt{2}a-\sqrt{2}\right)^2+2\ge2\)

Vậy \(A_{min}=2\)

b)  \(x+2y=8\)

=> \(x=8-2y\)

\(B=y\left(8-2y\right)=8y-2y^2=8-\left(\sqrt{2}y-2\sqrt{2}\right)^2\le8\)

Vậy  \(B_{max}=8\)

DD
20 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

Dấu \(=\)khi \(a=b=1\).

b) \(\left(x-2y\right)^2\ge0\Leftrightarrow x^2+4y^2\ge4xy\Leftrightarrow x^2+4xy+4y^2\ge8xy\)

\(\Leftrightarrow xy\le\frac{\left(x+2y\right)^2}{8}=\frac{8^2}{8}=8\)

Dấu \(=\)khi \(\hept{\begin{cases}x=4\\y=2\end{cases}}\).

9 tháng 7 2023

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)

18 tháng 9 2016

Lớn nhất chứ nhỏ nhất làm gì có

Ta có x = 8 - 2y

=> B = (8 - 2y)y = - 2y2 + 8y = - (2y - \(2×\sqrt{2}×2×\sqrt{2}y\) + 8) + 8

= - ( \(\sqrt{2}y-2\sqrt{2}\))2 + 8 \(\le8\)

Vậy GTLN là 8 khi x = 4; y = 2

18 tháng 9 2016

bn ơi, còn câu này nữa

cho a+b=2. tìm GTNN của A =\(a^2+b^2\)

13 tháng 12 2015

có: \(x^2+y^2\ge2xy\left(BDTCauchy\right)\)
\(x^2+z^2\ge2xz\)
\(y^2+z^2\ge2yz\)
Cộng vế với vế \(\Rightarrow x^2+y^2+z^2\ge xy+xz+yz\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+xz+yz\right)\)
\(\Rightarrow\frac{a^2}{3}\ge xy+xz+yz\)
MaxM=a2/3 
Dấu "=" xảy ra <=> x=y=z=1/3a