K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2015

Dùng hằng đang thuc la ra~~~daif qua nen ngai viet

26 tháng 5 2015

p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r

30 tháng 8 2020

\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)

b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)

Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

2.

a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được 

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(...\)

\(A=2^{32}-1\left(ĐPCM\right)\)

b) Ta có

\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)

=\(201\left(-1+5+9-13\right)=0\)

Suy ra ĐPCM

3

a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)

c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp 

30 tháng 8 2020

Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích

22 tháng 7 2018

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)

4 tháng 10 2019

Ta có :

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)

4 tháng 10 2019

ừ nhỉ tui k để ý 3 cái đằng sau là hđt :))

Thanks bạn nha !!!

23 tháng 8 2020

Mk nghĩ là :

a) 6

b) 24

23 tháng 8 2020

a. \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow x=y=z\)( đpcm )

28 tháng 9 2016

1

x2-y2-x+y

=(x-y)(x+y)-(x-y)

=(x-y)(x+y-1)

2

b(1-a)-x(1-a3)

=(1-a)-x(1-a)(1+a+a2)

=(1-a)(1-x-ax-xa2)

3

x4+4x2-5

=x4+4x2+4-9

=(x2+2)2_32

=(x2+2-3)(x2+2+3)

=(x2-1)(x2+5)

29 tháng 9 2016

c6

4a2b2-(a2+b2-c2)2

=(2ab)2-(a2+b2-c2)2

=(2ab-a2-b2+c2)(2ab+a2+b2-c2)