K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

Ta có: x=2011 \(\Rightarrow\)x+1=2012

\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)

=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)

\(x-1=2011-1=2010\)

=

5 tháng 3 2018

Thay 2012=x+1.

\(A=x^{2011}-\left(x+1\right)x^{2010}+\left(x+1\right)x^{2009}-\left(x+1\right)x^{2008}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(A=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)

\(A=x-1=2011-1=2010\)

6 tháng 4 2018

=20122011-2012.20122010+2012.20122009-.......................-2012.20122-1

còn lại tự làm nhá

6 tháng 4 2018

Violympic toán 7

17 tháng 9 2018

a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)

\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)

\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)

\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)    (1)

Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)

Nên biểu thức (1) xảy ra khi \(x+2013=0\)

\(x=-2013\)

b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)  (2)

Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)

Nên biểu thức (2) xảy ra khi \(x-2011=0\)

\(x=2011\)

12 tháng 2 2016

ủng hộ mình lên 280 điểm với các bạn

a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\\left(x-2012-x+2011\right)\left(x-2012+x-2011\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\2x=2023\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

b: Trường hợp 1: x<2010

Pt sẽ là 2010-x+2011-x=2012

=>4021-2x=2012

=>2x=2009

hay x=2009/2(nhận)

TRường hợp 2: 2010<=x<2011

=>x-2010+2011-x=2012

=>1=2012(vô lý)

Trường hợp 3: x>=2011

=>x-2010+x-2011=2012

=>2x=2012+4021=6033

hay x=6033/2(nhận)

2 tháng 4 2020
https://i.imgur.com/9wHQzCB.jpg
14 tháng 3 2017

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(=>\dfrac{x+4}{2010}+1\))+(\(\dfrac{x+3}{2011}+1\))=\(\left(\dfrac{x+2}{2012}+1\right)\)+\(\left(\dfrac{x+1}{2013}+1\right)\)

=>\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

=>x+2014(\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\))=0

ta thấy \(\dfrac{1}{2010}>\dfrac{1}{2011}>\dfrac{1}{2012}>\dfrac{1}{2013}\)

=>\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}>0\)

để A=0

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow\)x=-2014

14 tháng 3 2017

a)\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\Rightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)

\(\Rightarrow x+2014=0\)

\(\Rightarrow x=-2014\)

16 tháng 3 2018

\(5-\frac{x}{2010}+4-\frac{x}{2011}+3-\frac{x}{2012}=6-\frac{x}{2009}+1-\frac{x}{1007}.\)

\(\left(5+4+3\right)-x.\frac{1}{2010}-x.\frac{1}{2011}-x\frac{1}{2012}=\left(6+1\right)-x.\frac{1}{2009}-x\frac{1}{1007}\)

\(12-x.\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=7-x.\left(\frac{1}{2009}+\frac{1}{1007}\right)\)

\(-x.\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)+x.\left(\frac{1}{2009}+\frac{1}{1007}\right)=7-12\)

\(x.\left(\frac{-1}{2010}-\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2009}+\frac{1}{1007}\right)=-5\)

\(x=\frac{-5}{\frac{-1}{2010}-\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2009}+\frac{1}{1007}}\)