K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

=>x+1=2006

chỗ nào có 2006 thay vào rút gọn

4 tháng 2 2016

anh làm luôn ra đi

19 tháng 3 2018

Đáp án B

Cách 1: Tư duy suy luận

Ta có  

L = lim x → + ∞ m x + 2006 x + x 2 + 2007 = lim x → + ∞ x m + 2006 x x + x 1 + 2007 x 2 = lim x → + ∞ x m + 2006 x x 1 + 1 + 2007 x 2

= lim x → + ∞ m + 2006 x 1 + 1 + 2007 x 2 = m 1 + 1 = m 2 . Để L=0 thì m 2 = 0 ⇔ m = 0 .

Cách 2: Sử dụng máy tính cầm tay

Chọn m=0,5 thỏa mãn các phương án A, C, D. Ta có  L = lim x → + ∞ 0,5 x + 2006 x + x 2 + 2007  .

Nhập vào màn hình:

 Suy ra L ≈ 1 4 ⇒ L ≠ 0 . Loại ngay A, C, D.

8 tháng 2 2016

đặt \(A=\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(A=\left(\frac{2003}{2}+1\right)+\left(\frac{2002}{3}+1\right)+..+\left(\frac{1}{2004}+1\right)+\frac{2005}{2005}\)

\(A=\frac{2005}{2}+\frac{2005}{3}+..+\frac{2005}{2004}+\frac{2005}{2005}\)

\(A=2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2004}+\frac{1}{2005}\right)\)

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2005}\right)}=\frac{1}{2005}\)

vậy P=1/2005

4 tháng 2 2016

cái này zới cái trên để mai tính giờ ngủ

1+1/3+1/6+...+1/x(x+1)=1/2003/2005

    1/3+1/6+...+1/x(x+1)=2003/2005

   1/2(1/3+1/6+..+1/x(x+1)=2003/4010

 1/6+1/12+...+1/x(x+1)=2003/4010

  1/2*3+1/3*4+...+1/x(x+1)=2003/4010

   1/2-1/3+1/3-1/4+...+1/x-1/x+1=2003/4010

 1/2-1/x+1=2003/4010

         1/x+1=1/2005

           x+1=2005

          x=2004

   

1 tháng 4 2016

A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\) < 1 => \(\frac{2005^{2005}+1}{2005^{2006}+1}\) < \(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\) = \(\frac{2005^{2005}+2005}{2005^{2006}+2005}\)\(\frac{2005.\left(2005^{2004}+1\right)}{2005.\left(2005^{2005}+1\right)}\) = \(\frac{2005^{2004}+1}{2005^{2005}+1}\) = B => A<B.

1 tháng 4 2016

Ta thấy:A=\(\frac{2005^{2005+1}}{2005^{2006}+1}\)<1
Ta có:A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\)<\(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\)=\(\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\)=b
Vậy A<B
Chắc chắn 100%

7 tháng 3 2018

Đáp án đúng : C

14 tháng 11 2017

16 tháng 2 2018

áp án B

Ta có: log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 ⇔ y + 1 log 3 x + 1 y + 1 + x − 1 y + 1 = 9

⇔ y + 1 log 3 c + 1 y + 1 + x + 1 y + 1 − 2 y = 11

⇔ y + 1 log 3 c + 1 y + 1 − 2 = 9 − x + 1 y + 1       *

 Nếu   x + 1 y + 1 > 9 ⇒ V T * > 0 ;   V P * < 0

Ngược lại nếu   x + 1 y + 1 < 9 ⇒ V T * < 0 ;   V P * > 0

Do đó   * ⇔ x + 1 y + 1 = 9 ⇔ x y + x + y = 8

Khi đó   P = x + y 3 − 3 x y x + y − 57 x + y = x + y 3 − 3 8 − x − y x + y − 57 x + y

Đặt   t = x + y ≥ 2 ⇒ f t = t 3 − 3 8 − t t − 57 t = t 3 + 3 t 2 − 81 t

⇒ f ' t = 3 t 2 + 6 t − 81 = 0 ⇒ t = − 1 + 2 7 ⇒ P min = f − 1 + 2 7 = 83 − 112 7 ⇒ a + b = − 29

9 tháng 7 2018

Chọn đáp án D

9 tháng 11 2017

Do f có đạo hàm tại điểm nên f  liên tục tại điểm .

Khi đó

a + b + 2 = 2a + b + 1 nên a = 1

Với a = 1, hàm số f(x) trở thành

f x = x + 2 a + b ; x < 1 a x 2 + b x + 2 ; x ≥ 1

f(x) có đạo hàm tại điểm x 0 = 1 khi và chỉ khi

lim x → 1 + f x - f 1 x - 1 = lim x → 1 f x - f 1 x - 1 ⇔ lim x → 1 + x 2 + b x + 2 - b - 3 x - 1 = lim x → 1 x + 2 + b - b - 3 x - 1 ⇔ lim x → 1 + x + b + 1 = l i m 1 ⇔ b + 2 = 1 ⇒ - 1

Suy ra a + b = 0. Vậy P = 5.

Đáp án cần chọn là D