Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)
\(\Rightarrow x^2+yz\le xy+xz\)
\(\Rightarrow zx^2+yz^2\le xyz+xz^2\)
\(\Rightarrow P\le x^3+y^3+z^3+8\left(xy^2+xz^2+xyz\right)\)
\(\Rightarrow P\le x^3+y^3+z^3+3yz\left(y+z\right)+8\left(xy^2+xz^2+2xyz\right)\)
\(\Rightarrow P\le x^3+\left(y+z\right)^3+8x\left(y+z\right)^2\)
\(\Rightarrow P\le x^3+\left(4-x\right)^3+8x\left(4-x\right)^2\)
\(\Rightarrow P\le8x^3-52x^2+80x+64\)
Tới đây, đơn giản nhất là khảo sát hàm \(f\left(x\right)=8x^3-52x^2+80x+64\) trên \(\left[0;4\right]\)
(Nếu ko khảo sát hàm, ta có thể tách như sau, tất nhiên là dựa trên điểm rơi có được từ việc khảo sát hàm):
\(\Rightarrow P\le\left(8x^3-52x^2+80x-36\right)+100\)
\(\Rightarrow P\le4\left(x-1\right)^2\left(2x-9\right)+100\)
Do \(0\le x\le4\Rightarrow2x-9< 0\Rightarrow P\le100\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;3;0\right)\) và 1 vài bộ hoán vị của chúng
Áp dụng BĐT Bunhiacôpxki:
\(1=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\le\left(x+y+z\right)\left(x+y+z\right)\)
\(\Rightarrow x+y+z\ge1\)
\(T=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(x=y=z=\frac{1}{3}\)
\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)
HD: áp dụng BĐT Cô-si cho 3 số hạng trên, khi đó trong căn sẽ triệt tiêu các tổng suy ra đpcm
Áp dụng BĐT Cô-si ta có:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{3xy}\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)
Tương tự:\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz};\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)
Công vế với vế của 3 BĐT trên ta đươc:
\(P\ge\frac{\sqrt{3xy}}{xy}+\frac{\sqrt{3yz}}{yz}+\frac{\sqrt{3zx}}{zx}=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\) \(=\sqrt{3}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\sqrt{3}\)
Dấu '='xảy ra khi \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=3\sqrt{3}\)khi \(x=y=z=1\)
:))
Vì \(x\ge1\Rightarrow x^2\ge x\)
Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)
\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)
Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)
\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)
\(\Rightarrow\left(x+y\right)^2+z^2\le18\)
\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3
\(M+200=x^2+y^2+z^2+2xy-yz-xz\ge0\)
\(\Leftrightarrow x^2+x\left(2y-z\right)+y^2+z^2-yz\ge0\)
Can cm \(\left(2y-z\right)^2-4\left(y^2+z^2-yz\right)\le0\)
\(\Leftrightarrow3z^2\ge0\). TU dok ta co \(M+200\ge0\rightarrow M\ge-200\)
\("="\Leftrightarrow\left(x;y;z\right)=\left(10;-10;0\right)=\left(-10;10;0\right)\)