Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\orbr{\begin{cases}y=\frac{3}{x}\\z=\frac{4}{x}\end{cases}\Rightarrow\frac{12}{x^2}=6\Rightarrow x^2=2}\)
\(\orbr{\begin{cases}x=\frac{3}{y}\\z=\frac{6}{y}\end{cases}\Rightarrow\frac{18}{y^2}=4\Rightarrow y^2=\frac{9}{2}}\)
\(\orbr{\begin{cases}x=\frac{4}{z}\\y=\frac{6}{z}\end{cases}\Rightarrow\frac{24}{z^2}=3\Rightarrow z^2=8}\)
\(A=\frac{1}{2}\left(2+\frac{9}{2}+8\right)=\frac{4+9+16}{4}=\frac{29}{4}\)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath
\(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4=-\left(x^2+y^2\right)^2=-1^2=-1\)
\(A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)
\(A=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(A=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(A=2x^4+2x^2y^2+2y^4-3x^4-3y^4\)
\(A=-\left(x^4-2x^2y^2+y^4\right)\)
\(A=-\left(x^2-y^2\right)^2=-1^2=-1\)
Vậy A=-1
cảm ơn
A=2(x^2-y^2)(x^4+x^2y^2+y^4)-3(x^4-2x^2y^2+y^2-2x^2y^2)
A=2(x^4-2x^2y^2+y^4+3x^2y^2)-3[(x^2-y^2)^2-2x^2y^2]
A=2[(x^2-y^2)^2+3x^2y^2]-3(1-2x^2y^2)
A=2(1+3x^2y^2)-3+6x^2y^2
A=2+6x^2y^2-3+6x^2y^2
A=12x^2y^2-1
...................................