Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y\right)^3-1-3\left(x-y\right).1\left(x-y-1\right)-\left[\left(x-y\right)^3+1+3\left(x-y\right).1\left(x-y+1\right)\right]+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1\right)-3\left(x-y\right)\left(x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right)\left(x-y-1+x-y+1\right)+6\left(x-y\right)^2\)
\(=-2-3\left(x-y\right).2\left(x-y\right)+6\left(x-y\right)^2\)
\(=-2-6\left(x-y\right)^2+6\left(x-y\right)^2=-2\)
Vậy biểu thức trên ko phụ thuộc vào biến. Chúc bạn học tốt.
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
a\(=3x^2-6x+6x-3x^2+5=5\)=>ko phụ thuộc vào biến x
b,\(=2x^2y-2xy^2+2xy^2-x^2y-x^2y=0\)=>ko phụ thuộc vào biến ,x,y
Ta có: \(B=\left(2x-y\right)^3-2\left(4x^3+1\right)+6xy+y^3\)
\(=8x^3-12x^2y+6xy-y^3-8x^3-2+6xy+y^3\)
\(=12xy-2\)
Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=1-2x^2y^2\)
Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)
Thế vào ta được
\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)
Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không
Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)
\(=\left(x-y\right)^3-3\left(x-y\right)^2+3\left(x-y\right)-1-\left(x-y\right)^3-3\left(x-y\right)^2-3\left(x-y\right)-1+6\left(x-y\right)^2\)
=-2
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow B=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)
\(\Leftrightarrow B=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(-3x^2-3x^2+6x^2\right)+\left(3x-3x\right)+\left(-1-1-6\right)\)
\(\Leftrightarrow B=-8\)
Vậy biểu thức trên không phụ thuộc vào biến x (Đpcm)
Ta có: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)
\(=2\left(x^2+y^2\right)\left(x^4+x^2y^2+y^4\right)-3x^4-3y^4\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-x^4-2x^2y^2-y^4\)
\(=-\left(x^4+2x^2y^2+y^4\right)\)
\(=-\left(x^2+y^2\right)^2\)
\(=-1\)
Vậy biểu thức trên không phụ thuộc vào biến.
thank you