Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4xy\le\left(x+y\right)^2=1\)
=> \(xy\le4\)
Dấu "=" xảy ra <=> x = y = 1/2
b) A = \(A=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2xy+\dfrac{2}{xy}+4=\left(32xy+\dfrac{2}{xy}\right)-30xy+4\ge8-\dfrac{30}{4}+4=\dfrac{9}{2}\)
Dấu "=" xảy ra <=> x = y = 1/2
Cho x,y > 0. Tìm GTNN của:
a) x2 + y2 + \(\dfrac{1}{xy}\) với x + y = 2
b) x + y + \(\dfrac{1}{xy}\)
a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)
Vậy ...
b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)
\(\Leftrightarrow x^2y=y^2x=1\)
\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)
\(\Leftrightarrow x=y=1\)
Vậy ...
\(x^2-\left(y+1\right)x+y^2-y=0\)
\(\Leftrightarrow x^2-\left(y+1\right)x+\dfrac{1}{4}\left(y+1\right)^2-\dfrac{1}{4}\left(y+1\right)^2+y^2-y=0\)
\(\Leftrightarrow\left(x-\dfrac{y+1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-1=0\)
\(\Leftrightarrow\dfrac{3}{4}\left(y-1\right)^2-1=-\left(x-\dfrac{y+1}{2}\right)^2\le0\)
\(\Rightarrow\dfrac{3}{4}\left(y-1\right)^2\le1\)
\(\Rightarrow\left(y-1\right)^2\le\dfrac{4}{3}\)