Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Để phương trình có 2 nghiệm
\(\Delta'\ge0\Rightarrow\left(-1\right)^2-1.3m\ge0\Leftrightarrow1-3m\ge0\Leftrightarrow1\ge3m\Leftrightarrow\dfrac{1}{3}\ge m\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=\dfrac{3m}{1}=3m\end{matrix}\right.\)
Ta có:
\(x_1^2x_2^2=x_1+x_2+7\\ \Leftrightarrow x_1x_2.x_1x_2=x_1+x_2+7\\ \Rightarrow3m.3m=2+7\\ \Leftrightarrow9m^2-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\left(tm\right)\\m=1\left(ktm\right)\end{matrix}\right.\)
Vậy m = -1
\(x^2+mx+4=0\left(1\right)\)
+)Vì phương trình có 1 nghiệm là -1, do đó theo tính chất nhấm nghiệm thì có \(a-b+c=0\)
⇒ nghiệm còn lại là \(-4\).
+) Để phương trình có nghiệm thì \(\Delta\ge0\) hay \(m^2-16\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-4\\m\ge4\end{matrix}\right.\)
Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=4\end{matrix}\right.\)
Có : \(x_1^2+x^2_2=6m-13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6m-13\)
\(\Leftrightarrow m^2-8=6m-13\)
\(\Leftrightarrow m^2-6m+5=0\Leftrightarrow\left(m-1\right)\left(m-5\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=5\left(n\right)\end{matrix}\right.\)
Vậy...
a, bạn tự làm
b, Thay x = 3 vào pt trên ta được
\(9-3m-3=0\Leftrightarrow6-3m=0\Leftrightarrow m=2\)
Thay m = 2 vào ta được \(x^2-2x-3=0\)
Ta có a - b + c = 1 + 2 - 3 = 0
vậy pt có 2 nghiệm x = -1 ; x = 3
c, \(\Delta=m^2-4\left(-3\right)=m^2+12>0\)
vậy pt luôn có 2 nghiệm pb
\(x_1x_2+5\left(x_1+x_2\right)-1997=0\)
\(\Rightarrow-3+5m-1997=0\Leftrightarrow5m-2000=0\Leftrightarrow m=400\)
a, Thay x = -5 ta đc
\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)
Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)
b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)
Vậy pt trên luôn có 2 nghiệm pb
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)
\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)
a: Thay x=-5 vào pt, ta được:
25-5m-35=0
=>5m+10=0
hay m=-2
Theo đề, ta có: \(x_1x_2=-35\)
nên \(x_2=7\)
b: \(ac=-1\cdot35< 0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)
\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)
hay \(m\in\left\{4;-4\right\}\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(m+2\right)\)
\(=25-4m-8=-4m+17\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+17>0
=>-4m>-17
=>\(m< \dfrac{17}{4}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-5\right)}{1}=5\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m+2}{1}=m+2\end{matrix}\right.\)
\(P=x_1^2\cdot x_2+x_1\cdot x_2^2-x_1^2\cdot x_2^2-4\)
\(=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)
\(=5\left(m+2\right)-\left(m+2\right)^2-4\)
\(=5m+10-m^2-4m-4-4\)
\(=-m^2+m+2\)
\(=-\left(m^2-m-2\right)\)
\(=-\left(m^2-m+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{9}{4}< =\dfrac{9}{4}\forall m\)
Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)
\(\Delta=25-4\left(m+2\right)=17-4m>0\Rightarrow m< \dfrac{17}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+2\end{matrix}\right.\)
\(P=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)
\(=5\left(m+2\right)-\left(m+2\right)^2-4\)
\(=-\left[\left(m+2\right)-\dfrac{5}{2}\right]^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(P_{max}=\dfrac{9}{4}\) khi \(m+2=\dfrac{5}{2}\Rightarrow m=\dfrac{1}{2}\)
\(\Delta'=m^2-\left(m-1\right)=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall m\)
Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^2x_2+mx_2-x_2=4\)
\(\Leftrightarrow x_1.x_1x_2+\left(m-1\right)x_2=4\)
\(\Leftrightarrow\left(m-1\right)x_1+\left(m-1\right)x_2=4\)
\(\Leftrightarrow\left(m-1\right)\left(x_1+x_2\right)=4\)
\(\Leftrightarrow2m\left(m-1\right)=4\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
\(\text{Δ}=\left(-m\right)^2-4\left(m-5\right)\)
\(=m^2-4m+20\)
\(=m^2-4m+4+16=\left(m-2\right)^2+16>0\forall m\)
=>Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_2=1\\x_1+x_2=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=1-m\\x_1=m-x_2=m-1+m=2m-1\end{matrix}\right.\)
\(x_1\cdot x_2=m-5\)
=>\(\left(1-m\right)\left(2m-1\right)=m-5\)
=>\(2m-1-2m^2+m-m+5=0\)
=>\(-2m^2+2m+4=0\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(nhận\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)