Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt : \(x^2-4x+1=0\Leftrightarrow x^2+1=4x\)(1)
\(\Leftrightarrow\left(x^2+1\right)^2=16x^2\Leftrightarrow x^4+2x^2+1=16x^2\Rightarrow x^4+1=14x^2\)(2)
\(\Leftrightarrow\left(x^2+1\right)^3=64x^3\Leftrightarrow x^6+3x^4+3x^2+1=64x^3\)
\(\Leftrightarrow x^6+3x^2\left(x^2+1\right)+1=64x^3\Leftrightarrow x^6+12x^3+1=64x^3\)
\(\Rightarrow x^6+1=52x^3\)(3)
Thay (1);(2);(3) vào T ta dược :
\(T=\left(\frac{x^2+1}{x}\right)^2+\left(\frac{x^4+1}{x^2}\right)^2+\left(\frac{x^6+1}{x^3}\right)^2\)
\(=\left(\frac{4x}{x}\right)^2+\left(\frac{14x^2}{x^2}\right)^2+\left(\frac{52x^3}{x^3}\right)^2=4^2+14^2+52^2=2916\)
a: \(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\cdot2\)
\(=\dfrac{10}{5}\cdot2=4\)
b: \(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}=1\)
1)\(ĐKXĐ:x\ne0\)
Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)
\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)
\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)
\(=2a+a^2-4a+4-a^2+2a=4\)
\(\Rightarrow\left(x+2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)
Ta có:
\(x^2-4x+1=0\)
\(\left(x-2\right)^2-4+1=0\)
\(\left(x-2\right)^2=3\)
\(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
TH1: \(x=2+\sqrt{3}\) => P=...........(bạn thế vào rồi tự tính nhé)
TH2: \(x=2-\sqrt{3}\) => P=...........(bạn thế vào rồi tự tính nhé)