K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Đkxđ : \(x+y\ne0\)

\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(\Rightarrow x-y=y\)

\(\Rightarrow x=2y\)

Thay x = 2y vào M có :

\(M=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy ...

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

7 tháng 3 2021

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

7 tháng 3 2021

tks nguoi ae

22 tháng 9 2019

Ta có: x^3 -3xy(x-y) -y^3 -x^2 + 2xy-y^2

= x^3 -y^3 - 3xy(x-y) -( x^2 -2xy+y^2)

= (x-y)(x^2+xy +y^2) - 3xy(x-y) -(x-y)^2

= (x-y)(x^2+xy+y^2 -3xy-x+y)

=11( x^2 -2xy+y^2 -x+y)

= 11[ (x-y)^2 -(x-y)]

= 11[ 11^2 -11]

= 11^3 -11^2=...

1 tháng 1 2016

Dễ chỉ ra được: 12(x^2 + y^2) = 25xy

suy ra 12 x^2 + 12 y^2 = 25xy khi đó ta được:

12(x+y)^2 = 49xy  hay tìm ra được (x+y)^2 = 49xy/12

Tương tự tìm được (x-y)^2  = xy/12

 thay vào A ta có: A^2 = 1/49, hay A = 1/7 hoặc A= -1/7

1 tháng 1 2016

xin lỗi em mới học lớp 6 vào chtt nha tick mình nha các bạn của mình

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)