\(x^2-2xy+2y^2-2x+6y+13=0\)

Tính \(N=\frac{3x^2y-1}{4xy}\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

Ta có :x2 - 2xy + 2y2 - 2x + 6y + 13 = 0 
=> x2 - 2x(y + 1) + 2y2 + 6y + 13 = 0 
=> x2 - 2x(y + 1) + (y + 1)2 + y2 + 4y + 12 = 0 
=> (x - y - 1)2 + (y + 1)2 + (y + 2)2 + 8 = 0 
Xét thấy vế trái luôn lớn hơn 0; mà vê phải lại bằng 0

Bạn xem lại đề nhé 

9 tháng 2 2017

đề sai rồi đấy. Chỗ 13 đó phải sửa là 5. Nếu thế thì N bằng bn ạ? Bạn Đinh Tuấn Việt ?

7 tháng 1 2017

\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+2^2\right)+\left(13-1-4\right)=0\\ \)

\(\left(x-y-1\right)^2+\left(y+2\right)^2+8>0\) Bẫy hả Cái đầu không tồn tại sao có cái sau được

7 tháng 1 2017

câu này không tính dc N ngonhuminh ! can cm nhu bn la dug

4 tháng 9 2019

đề bài bạn sai 

25 tháng 2 2017

\(x^2-2xy+2y^2-2x+6y+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(-2x+2y\right)+1+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}x-y-1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

\(\Rightarrow A=\frac{3x^2y-1}{4xy}=\frac{3.\left(-1\right)^2.\left(-2\right)-1}{4.\left(-1\right).\left(-2\right)}=-\frac{7}{8}\)

8 tháng 1 2017

Có vẻ đề  đúng

\(P=\frac{3x^2y-1}{4xy}\)

\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

\(\left(x+y-1\right)^2+\left(y+2\right)^2=0\)

\(\hept{\begin{cases}x+y-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\Rightarrow}P=\frac{3.9.\left(-2\right)-1}{4.3.\left(-2\right)}=\frac{55}{24}}\)

8 tháng 1 2017

Cách giải đúng rồi nhưng sai hằng đảng thức nha bạn 
\(x^2+y^2+1-2xy-2x+2y=\left(y-x+1\right)^2\)

rồi sửa x= -1 là được