K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 9 2018

Lời giải:

\(x^2-2019x+1=0\Rightarrow x^2+1=2019x\)

\(A=\frac{x^4+x^2+1}{x^2}=\frac{x^4+2x^2+1-x^2}{x^2}=\frac{(x^2+1)^2-x^2}{x^2}\)

\(=\frac{(2019x)^2-x^2}{x^2}=\frac{x^2(2019^2-1)}{x^2}=2019^2-1\)

Vậy \(A=2019^2-1\)

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

BT1:   a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)- \(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)+ \(\dfrac{3}{x}\)= \(\dfrac{x^2+2}{x^2-x}\)BT2: a) Cho a>b, chứng minh rằng 2a+1>2b-3b) Tìm x để giá trị của biểu thức 3x-1 ≤  giá trị biểu thức x+2c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x)...
Đọc tiếp

BT1:   

a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)\(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)\(\dfrac{3}{x}\)\(\dfrac{x^2+2}{x^2-x}\)

BT2: 

a) Cho a>b, chứng minh rằng 2a+1>2b-3

b) Tìm x để giá trị của biểu thức 3x-1 ≤  giá trị biểu thức x+2

c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)

2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x) ; \(\dfrac{x}{3}\)-\(\dfrac{x+1}{5}\)>1

BT3: Giải bài toán bằng cách lập phương trình

 1 ô tô đi từ A đến B với vận tốc 50km/h. Đến B, ô tô nghỉ lại 1h, sau đó quay trở về A với vận tốc 60km/h. Tổng thời gian đi và về(gồm thời gian nghỉ lại) là 6h30p. Tính quãng đường AB?

 Mng giúp mình với mai mình kiểm tra rồi ạ, mình cảm ơn

0

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại

7 tháng 3 2022

a, đk : x khác -2 ; 2 

\(\left(x+2\right)^2-8x=0\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)(ktm) 

pt vô nghiệm 

b, đk : x khác -1 ; 1 

\(x\left(x+1\right)-5x+3=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow x=1\left(ktm\right);x=3\left(tm\right)\)

31 tháng 10 2018

x2 - 5x = 0

=> x(x - 5) = 0

=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

31 tháng 10 2018

b)  (3x - 5)2 - 4 = 0

=> (3x - 5)2 = 0 + 4

=> (3x - 5)2 = 4

=> (3x - 5)2 = 22

=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)

=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)

14 tháng 1 2021

Linh tinh thui, chắc sai.

\(x+\dfrac{1}{x}=2\) (x khác 0) 

\(\Rightarrow\dfrac{x^2+1}{x}=2\Rightarrow x^2+1=2x\Rightarrow\left(x-1\right)^2=0\Rightarrow x=1\)(TM)

Thay \(x=1\) vào bt A có \(A=\dfrac{1}{2}\)

14 tháng 1 2021

Cách khác: Ta dễ dàng nhận thấy \(x\neq 0\).

\(\dfrac{1}{A}=\dfrac{x^4+1}{x^2}=x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2=2^2-2=2\Rightarrow A=\dfrac{1}{2}\).

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:ĐK: $x\neq \pm 1$

a) 

\(B=\frac{(x-1)^2-(x+1)^2}{(x+1)(x-1)}+\frac{4}{x^2-1}=\frac{x^2-2x+1-(x^2+2x+1)}{(x+1)(x-1)}+\frac{4}{(x-1)(x+1)}=\frac{-4x+4}{(x-1)(x+1)}=\frac{-4(x-1)}{(x-1)(x+1)}=\frac{-4}{x+1}\)

b) 

Khi $x^2-x=0\Leftrightarrow x(x-1)=0\Leftrightarrow x=0$ hoặc $x=1$. Mà $x\neq \pm 1$ nên $x=0$

Khi đó: $B=\frac{-4}{0+1}=-4$

12 tháng 5 2022

\(x,y,z\ne0\)

-Ta c/m: -Với \(a+b+c=0\) thì: \(a^3+b^3+c^3-3abc=0\)

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\left(đpcm\right)\)

-Quay lại bài toán:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

\(A=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3}{x^2y^2z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3-3x^2y^2z^2+3x^2y^2z^2}{x^2y^2z^2}=\dfrac{\left(xy+yz+zx\right)\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=\dfrac{0.\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=3\)