Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x^{1000}+y^{1000}\right)=6,912\Rightarrow x^{2000}+y^{2000}+2\left(xy\right)^{1000}=6,912^2\Leftrightarrow\left(xy\right)^{1000}=\frac{6,912^2-33,76244}{2}\)
Lại có : \(x^{3000}+y^{3000}=\left(x^{1000}+y^{1000}\right)^3-3\left(xy\right)^{1000}\left(x^{1000}+y^{1000}\right)\)
\(=6,912^3-3.\frac{6,912^2-33,76244}{2}.6,912\)
Đến đây bạn bấm máy tính nha ^^ Đề thi CASIO đúng không?
Đặt a = x1000 , b = y1000. Theo bài ra ta có : a + b = 6,912 và a2 + b2 = 33,76244
=> x3000 + y3000 = a3 + b3 = ( a+b)3 – 3ab ( a + b)
mà: 3ab = 3\(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\)
=> a3 + b3 = (a +b)3 – 3 \(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\left(a+b\right)\)
=> Thay số tính trên máy ta được: x3000 + y300= 184,9360067
Đặt \(\hept{\begin{cases}x^{1000}=a\\y^{1000}=b\end{cases}}\)
Thì ta có
\(\hept{\begin{cases}a+b=6,912\\a^2+b^2=33,76244\end{cases}}\)
Ta có (a + b)2 = a2 + b2 + 2ab = 6,9122
Từ đây suy ra được ab có ab từ đây đễ đàng suy ra được
a3 + b3 = (a + b)(a2 - ab + b2)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x=-x+4\\y=3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
c: Gọi A,B lần lượt là giao điểm của đường thẳng y=-x+4 đến hai trục Ox, Oy
Tọa độ điểm A là: \(\left\{{}\begin{matrix}y_A=0\\4-x=0\end{matrix}\right.\Leftrightarrow A\left(4;0\right)\)
Tọa độ điểm B là: \(\left\{{}\begin{matrix}x_A=0\\y=-0+4=4\end{matrix}\right.\Leftrightarrow B\left(0;4\right)\)
\(AB=\sqrt{\left(0-4\right)^2+\left(4-0\right)^2}=4\sqrt{2}\)
Khoảng cách từ O đến đường thẳng y=-x+4 là:
\(AH=\dfrac{OA\cdot OB}{AB}=\dfrac{16}{4\sqrt{2}}=2\sqrt{2}\)
Tọa độ giao điểm là:
{3x=−x+4y=3x⇔{x=1y=3{3x=−x+4y=3x⇔{x=1y=3
c: Gọi A,B lần lượt là giao điểm của đường thẳng y=-x+4 đến hai trục Ox, Oy
Tọa độ điểm A là: {yA=04−x=0⇔A(4;0){yA=04−x=0⇔A(4;0)
Tọa độ điểm B là: {xA=0y=−0+4=4⇔B(0;4){xA=0y=−0+4=4⇔B(0;4)
AB=√(0−4)2+(4−0)2=4√2AB=(0−4)2+(4−0)2=42
Khoảng cách từ O đến đường thẳng y=-x+4 là:
AH=OA⋅OBAB=164√2=2√2
Đặt \(a=x^{1000},b=y^{1000}\)
\(\Rightarrow a+b=6,912\) và \(a^2+b^2=33,76244.\)
Ta có \(\text{a+b= 6,912}\)
\(\Rightarrow\) \(\left(a+b\right)^2=6,912^2\)
\(\Leftrightarrow \)\(a^2+2ab+b^2=47,775744\)
\(\Leftrightarrow ab=\frac{47,775744-30,76244}{2}\)
\(\Leftrightarrow ab=8,506052\)
\(\Leftrightarrow ab(a+b)=58,797978624\)
Ta lại có \(a^3+b^3+ab(a+b)=(a+b)(a^2+b^2)\)
\(\Leftrightarrow \)\(a^3+b^3=174,5680067\)
Vậy \(x^{3000}+y^{3000}=174,5680067\)