Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
a, Thay m=0 vào pt ta có:
\(x^2-x+1=0\)
\(\Rightarrow\) pt vô nghiệm
b, Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Xét \(\Delta=\text{}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)
=> Pt luôn có hai nghiệm pb
Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)
\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)
\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)
\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)
\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)
Vậy m=0
Ta có:
\(\Delta'=b'^2-ac=m^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
Vậy phương trình trên luôn có 2 nghiệm x1; x2 với mọi giá trị của m
Áp dụng Viet, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-2m\\x_1\cdot x_2=\frac{c}{a}=2m-1\end{matrix}\right.\)
Ta có:
\(A=x_1^2\cdot x_2+x_1\cdot x_2^2\\ =x_1x_2\left(x_1+x_2\right)\\ =\left(2m-1\right)\cdot\left(-2m\right)\\ =-4m^2+2m\\ =-\left[\left(2m\right)^2-2\cdot2m\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{1}{4}\\ =-\left(2m-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall m\)
Vậy Max A = \(\frac{1}{4}\Leftrightarrow2m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{4}\left(tm\right)\)
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
khó alwms
Do \(x_1+x_2=1-m;x_1x_2=-m^2-2\) nên x1; x2 là 2 nghiệm của phương trình
\(x^2-\left(1-m\right)x-\left(m^2+2\right)=0\)
Theo Viete ta có:\(ac=-m^2-2< 0\) nên phương trình có 2 nghiệm trái dấu
Đặt \(\left(\frac{x_1}{x_2}\right)^3=-t< 0\Rightarrow\left(\frac{x_2}{x_1}\right)^3=\frac{-1}{t}\)
Ta có:\(T=-t-\frac{1}{t}\) ( Mình đoán không phải (x1/x2)3+(x2/x1)3 mà là (x1/x2)3-(x2/x1)3 nhé )
\(=-\left(t+\frac{1}{t}\right)\le2\)
Đẳng thức xảy ra bạn tự tìm nhé !