\(x^2+2\left(m+4\right)x+m^2-8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 6 2019

\(\Delta'=m^2+8m+16-m^2+8=8m+24\ge0\Rightarrow m\ge-3\)

\(A=x_1+x_2+3x_1x_2\)

\(A=-2\left(m+4\right)+3\left(m^2-8\right)\)

\(A=3m^2-2m-32\)

\(A=3\left(m-\frac{1}{3}\right)^2-\frac{97}{3}\)

\(\Rightarrow A_{min}=-\frac{97}{3}\) khi \(m=\frac{1}{3}\)

13 tháng 6 2019

Có phải -97/9 không

11 tháng 4 2016

len google ma tra

11 tháng 4 2016

\(\Delta=4.\left(m+4\right)^2-4.\left(m^2-8\right)=4m^2+32m+64-4m^2+32\)

\(=32m+96\)

Để PT trình có 2 nghiệm thì: \(32m+96\ge0\Leftrightarrow m\ge-3\)

Theo hệ thức viet ta có: \(x_1+x_2=2\left(m+4\right);x_1.x_2=m^2-8\)

Suy ra: A=x1+x2+3x1.x2=2(m+4)+3(m2-8)=2m+8+3m2-24

=3m2+2m-16=\(3.\left(m^2+\frac{2}{3}m-\frac{16}{3}\right)=3.\left(m^2+2.m.\frac{1}{3}+\frac{1}{9}-\frac{49}{9}\right)\)

\(=3.\left(m^2+2.m.\frac{1}{3}+\frac{1}{9}\right)-\frac{49}{3}\)

Lớn nhất hay nhỏ nhất =="

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : 

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)

Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.

Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)

Suy ra \(MinA^2=0\Leftrightarrow m=-1\) 

Vậy Min A = 0 \(\Leftrightarrow\)m = -1

10 tháng 6 2016

ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét

16 tháng 6 2018

đề có thiếu không bạn

16 tháng 6 2018

Đề bài này bị sai r

\(\text{Δ}=\left(2m+8\right)^2-4\left(m^2-8\right)\)

\(=4m^2+32m+64-4m^2+64=32m+128\)

Để phương trình có hai nghiệm thì 32m+128>=0

hay m>=-4

a: \(A=x_1+x_2-3x_1x_2\)

\(=\left(2m+8\right)-3\left(m^2-8\right)\)

\(=2m+8-3m^2+24\)

\(=-3m^2+2m+32\)

\(=-3\left(m^2-\dfrac{2}{3}m-\dfrac{32}{3}\right)\)

\(=-3\left(m^2-2\cdot m\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{97}{9}\right)\)

\(=-3\left(m-\dfrac{1}{3}\right)^2+\dfrac{97}{3}< =\dfrac{97}{3}\)

Dấu '=' xảy ra khi m=1/3

b: \(B=\left(x_1+x_2\right)^2-2x_1x_2-2\)

\(=\left(2m+8\right)^2-2\left(m^2-8\right)-2\)

\(=4m^2+32m+64-2m^2+16-2\)

\(=2m^2+32m+78\)

\(=2\left(m^2+16m+39\right)\)

\(=2\left(m^2+16m+64-25\right)\)

\(=2\left(m+8\right)^2-50>=-50\)

Dấu '=' xảy ra khi m=-8

18 tháng 3 2018

đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4

p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1

dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)

mậy minP = 1 khi m = 1

20 tháng 12 2015

 

a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)

\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)

b) A=\(x^4-13x^2+36\) không làm được nữa.....