K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

Em mới học lớp 7

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều

18 tháng 1 2018

Chị cũng là fan của BTS à

18 tháng 1 2018

Chị hâm mộ V đúng không

14 tháng 2 2016

Ta có:

Với  \(a,b\ge0\)  thì  \(a^2+b^2\ge2ab\)  nên \(\left(a+b\right)^2\ge4ab\)  (bất đẳng thức Cô-si)

Dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)  \(a=b\)

Áp dụng bất đẳng thức trên, ta được:

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)+8xy}{\left(x+y\right)^2}\ge\frac{2.2xy+8xy}{4xy}=\frac{12xy}{4xy}=3\)  (do  \(x,y>0\))

Dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)  \(x=y=1006\)

Vậy,  \(B_{min}=3\)   khi   \(x=y=1006\)