Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow P=\left(\frac{x\left(3-x\right)}{9-x^2}+\frac{2\left(x+3\right)}{9-x^2}+\frac{x^2-1}{9-x^2}\right):\left(\frac{2\left(x+3\right)-\left(x+5\right)}{x+3}\right)\)
\(\Leftrightarrow P=\frac{3x-x^2+2x+6+x^2-1}{9-x^2}:\frac{x+1}{x+3}\)
\(\Leftrightarrow P=\frac{5\left(x+1\right)}{\left(3-x\right)\left(x+3\right)}.\frac{x+3}{x+1}\)
\(\Leftrightarrow P=\frac{5}{3-x}\) Ta có A=\(\frac{10x^2}{x-3}\)
\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)( \(ĐK:x\ne2;x\ne0\))
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)
b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy GTNN của E là 2 khi x = 1
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)
Dấu "=" xảy ra khi:
\(x=y=z=\frac{2}{3}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\) ( 1 )
Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ( 2 )
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\) ( 3 )
Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)
\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
tìm GTNN của biểu thức P=\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\Rightarrow3\left(\frac{x}{y}+\frac{y}{x}\right)\ge6\)
Cộng theo vế 2 BĐT trên ta có:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge2-6=-4 \)
\(\Rightarrow P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge-4+5=1\)
Đẳng thức xảy ra khi \(x=y\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(P=\frac{5}{x^2+y^2}+\frac{5}{2xy}+\frac{1}{2xy}=5\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(P\ge\frac{5.4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}=\frac{22}{\left(x+y\right)^2}=\frac{22}{9}\)
\(\Rightarrow P_{min}=\frac{22}{9}\) khi \(x=y=\frac{3}{2}\)
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2+2x+1}{x^2+2}\)
\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)
\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)
\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2