K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

áp dụng bđt bunyakovsky cho 2 bộ số (1;1) và (căn x;căn y) ta có: (1^2+1^2)((căn x)^2 +(căn y)^2)>=(1.căn x=1.căn y)^2

                                                                                              <=>2(x+y)>=(căn x+căn y)^2

                                                                                                <=>A=căn x+căn y<=căn(2(x+y))=căn(2.1)=căn 2

đẳng thức xảy ra <=> (căn x)/1=(căn y)/1 và x+y=1<=>x=y=1/2

vậy maxA=căn 2<=>x=y=1/2

11 tháng 4 2016
ap dung bdt bunhiacopxki A^2=<(1+1)(x+y)=2 =>A=< can 2 dau = <=>x=y=1/2
NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

5 tháng 6 2017

Bạn bình phương lên là tính đc GTLN đó

5 tháng 6 2017

cảm ơn bạn

27 tháng 1 2022

Ta có: \(\sqrt{\left(x^2+\dfrac{1}{y^2}\right)\left(1+81\right)}\ge\sqrt{\left(x+\dfrac{9}{y}\right)^2}\)

=> \(\sqrt{x^2+\dfrac{1}{y^2}}\ge\dfrac{x+\dfrac{9}{y}}{\sqrt{82}}\)

Tương tự => \(\left\{{}\begin{matrix}\sqrt{y^2+\dfrac{1}{z^2}}\ge\dfrac{y+\dfrac{9}{z}}{\sqrt{82}}\\\sqrt{z^2+\dfrac{1}{x^2}}\ge\dfrac{z+\dfrac{9}{x}}{\sqrt{82}}\end{matrix}\right.\)

=> \(P\ge\dfrac{\left(x+y+z\right)+9\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}{\sqrt{82}}\)

Mà x + y + z = 1

      \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}=9\)

=> \(P\ge\sqrt{82}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

29 tháng 8 2018

Vì x>0; y>0

Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)

Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)

Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)

\(\Rightarrow4\le\sqrt{xy}\) (C)

Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)

Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)

Dấu "=" xảy ra <=> x = y

Vậy AMin = 4 khi và chỉ khi x = y

29 tháng 8 2018

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)

\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)

từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)

mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)

dấu = xảy ra khi x=y=4

vậy min A là 4 khi x=y=4

14 tháng 7 2019

mình cần gấp, thanks các bạn

14 tháng 7 2019

Đề chắc chắn đúng chứ bạn??