Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo cô-si thì \(2\sqrt{2x.3y}\le2x+3y\le2\Rightarrow xy\le\frac{1}{6}\)
\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\)
\(\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{26}{\frac{3.1}{6}}\)
\(=\frac{14}{\left(2x+3y\right)^2}+\frac{26.6}{3}=56\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
ta thấy \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\ge\frac{16}{\left(2x+3y\right)^2}+\frac{26}{3xy}\)(1)
lại có \(2x+3y\le2\Leftrightarrow\left(2x+3y\right)^2\le4\Leftrightarrow4x^2+9y^2+12xy\le4\left(2\right)\)
mặt khác \(4x^2+9y^2\ge12xy\)(theo Bất Đẳng Thức Cosi cho x,y>0) (3)
từ (1) và (2) => \(12xy+12xy\le4\Leftrightarrow3xy\le\frac{1}{2}\left(4\right)\)
từ (1) và (4) => \(A\ge\frac{16}{4}+\frac{26}{\frac{1}{2}}=4+52=56\)
dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
Áp dụng BĐT Cô-si cho 2015 số dương : x2015,x2015 và 2013 số 1. Ta có :
\(x^{2015}+x^{2015}+1+1+...+1\ge2015\sqrt[2015]{\left(x^2\right)^{2015}}=2015x^2\)
TT : \(y^{2015}+y^{2015}+1+1+...+1\ge2015y^2\)
\(z^{2015}+z^{2015}+1+1+...+1\ge2015z^2\)
Cộng 3 vế BĐT , ta được :
\(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)
\(\Rightarrow x^2+y^2+z^2\le3\)
Dấu ' = " xảy ra khi x = y = z = 1
Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath
Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html
\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge x+y+\frac{3}{x+y}\)
\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)
Tại \(x=y=\frac{2}{3}\)
Áp dụng bđt Bunhiacopxki ta có :
\(A=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{\sqrt{x}}+\sqrt{y}.\dfrac{2}{\sqrt{y}}+\sqrt{z}.\dfrac{3}{\sqrt{z}}\right)^2\)
\(\left(1+2+3\right)^2=36\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(A\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=36\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{6};y=\dfrac{1}{3};z=\dfrac{1}{2}\)
Áp dụng bất đẳng thức AM - GM:
\(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)
\(=\left(\dfrac{3}{2}x+\dfrac{6}{x}\right)+\left(\dfrac{1}{2}y+\dfrac{9}{2y}\right)+\left(\dfrac{5}{2}x+\dfrac{5}{2}y\right)\)
\(\ge2\sqrt{\dfrac{3}{2}x\times\dfrac{6}{x}}+2\sqrt{\dfrac{1}{2}y\times\dfrac{9}{2y}}+\dfrac{5}{2}\times5\)
\(=\dfrac{43}{2}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3}{2}x=\dfrac{6}{x}\\\dfrac{1}{2}y=\dfrac{9}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\left(\text{nhận}\right)\)
Vậy \(Min_P=\dfrac{43}{2}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)