Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi bài này sử dụng bđt cauchy trực tiếp luôn có được không?
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\) ; \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(P=\left(x^2+\frac{1}{y^2}\right)+\left(y^2+\frac{1}{x^2}\right)\)
\(=\left(x^2+y^2\right)+\frac{x^2+y^2}{x^2y^2}\ge\frac{1}{2}+\frac{\frac{1}{2}}{\frac{1}{4^2}}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = y =1/2
Em không chắc em làm đúng không nhưng ra kết quả khác cô Chi. Sai thì cô bỏ qua cho em ạ
\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=\left(xy+\frac{1}{xy}\right)^2\). Dễ thấy \(0< xy\le\left(\frac{x+y}{2}\right)^2=\frac{1}{4}\)
Xét hàm số \(f\left(t\right)=t+\frac{t}{t}\)trên \((0;\frac{1}{4}]\). Lấy t1<t2 \(\in(0;\frac{1}{4}]\)
Xét \(f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(1-\frac{1}{t_1t_2}\right)\)Vì \(t_1;t_2\in(0;\frac{1}{4}]\Rightarrow1< \frac{1}{t_1t_2}\)
Từ đó dễ ràng nhận ra: \(f\left(t_1\right)-f\left(t_2\right)>0\)Vậy \(f\left(t\right)\)nghịch biến trên \((0;\frac{1}{4}]\)
Do đó mà \(f\left(\frac{1}{4}\right)\le f\left(t\right)\forall t\in(0;\frac{1}{4}]\). Hay \(\frac{17}{4}\le f\left(t\right)\forall t\in(0;\frac{1}{4}]\)
=> \(\frac{17}{4}\le xy+\frac{1}{xy}\Rightarrow\frac{287}{16}\le\left(xy+\frac{1}{xy}\right)^2=P\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Áp dụng BĐT phụ \(4xy\le\left(x+y\right)^2\le1\)\(\Leftrightarrow xy\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Có \(K=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)\(=x^2+2x.\frac{1}{x}+\frac{1}{x^2}+y^2+2y.\frac{1}{y}+\frac{1}{y^2}\)\(=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+4\)
Áp dụng BĐT Cô-si cho 2 số dương \(x^2\)và \(y^2\), ta có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
Tương tự, ta có \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
Từ đó \(K\ge2xy+\frac{2}{xy}+4\)\(=32xy+\frac{2}{xy}-30xy+4\)
Áp dụng BĐT Cô-si cho 2 số dương \(32xy\)và \(\frac{2}{xy}\), ta có: \(32xy+\frac{2}{xy}\ge2\sqrt{32xy.\frac{2}{xy}}=16\)
Lại có \(xy\le\frac{1}{4}\Leftrightarrow-xy\ge-\frac{1}{4}\)nên \(K\ge16-\frac{30}{4}+4=\frac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy GTNN của K là \(\frac{25}{2}\)khi \(x=y=\frac{1}{2}\)
\(K=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+4=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16x^2}+\dfrac{15}{16y^2}+4\ge\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{2.15}{16xy}=5+\dfrac{2.15}{16xy}\)
\(x+y\ge2\sqrt{xy};\Rightarrow2\sqrt{xy}\le x+y\le1\Rightarrow2\sqrt{xy}\le1\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow K\ge5+\dfrac{2.15}{16.\dfrac{1}{4}}=\dfrac{25}{2}\)
\(P=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\) Nhân bung ra ghép cặp ,dùng cosy
\(P=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)
\(P=2+\left(\frac{1}{y}+\frac{1}{x}\right)+\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2\sqrt{\frac{1}{xy}}+2\sqrt{xy}+2\sqrt{\frac{xy}{ỹx}}.\) \(P=4+2\left(\sqrt{\frac{1}{xy}}\sqrt{xy}\right)\ge4+4\sqrt{\frac{xy}{xy}}=8.\). Dấu bằng trong các bất đẳng thức trên xẩy ra khi x = y , vì x2 + y2 = 1 và x , y dương nên : \(x=y=\frac{\sqrt{2}}{2}\) Khi đó P đạt giá trị nhỏ nhất Pmin = 8
Đính chính : Dòng thứ 4 từ trên xuông trong bài giải, viết đúng là \(P=4+2\left(\sqrt{xy}+\sqrt{\frac{1}{xy}}\right)\)
Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)
= (1 + 1/x)(1 + 1/y)
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy)
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\)
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)