Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(P=\frac{3}{2}\left(x+y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(\ge\frac{3}{2}.6+2\sqrt{\frac{3x}{2}.\frac{6}{x}}+2\sqrt{\frac{8}{y}.\frac{y}{2}}=9+6+4=19\)
\("="\Leftrightarrow x=2;y=4\)
2. Có hai cách nhé
Cách 1: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3y(y + 6) + 36
--> P = [ 12x(x - 2) + 36 ] + xy(x - 2)(y + 6) + 3y(y + 6)
--> P = 12[x(x - 2) + 3] + y(y + 6).[x(x - 2) + 3]
--> P = [x(x - 2) + 3].[y(y + 6) + 12]
--> P = (x² - 2x + 3)(y² + 6y + 12)
--> P = [(x - 1)² + 2].[(y + 3)² + 3] ≥ 2.3 = 6 > 0
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
Cách 2: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3(y + 3)² + 9
--> P = x(x - 2)[y(y - 6) + 12] + 3(y + 3)² +9
--> P = x(x - 2)[(y + 3)² + 3] + 3(y + 3)² + 9
--> P = x(x - 2)(y + 3)² + 3x(x - 2) + 3(y + 3)² + 9
--> P = (y + 3)²[x(x - 2) + 3] + 3x(x - 2) + 9
--> P = (y + 3)²[(x - 1)² + 2] + 3x² - 6x + 9
--> P = (y + 3)²(x - 1)² + 2(y + 3)² + 3(x - 1)² + 6 ≥ 6
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
P/S: MinP = 6 > 0 ∀ x, y ∈ R --> P luôn dương ∀ x, y ∈ R
Mình nghĩ phần CM: "P luôn dương với mọi x,y thuộc R." là hơi thừa :-)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (*)
\(\Leftrightarrow\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\) (**)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Vậy thì \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2=t^2-3t+2=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\ge\left(2-\frac{3}{2}\right)^2-\frac{1}{4}=0\)
Vậy bất đẳng thức (**) đúng hay bất đẳng thức (*) đúng
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(2P=6x+4y+\frac{12}{x}+\frac{16}{y}\)
\(=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+3\left(x+y\right)\)
\(\ge2\sqrt{3x\cdot\frac{12}{x}}+2\sqrt{y\cdot\frac{16}{y}}+3\cdot6=12+8+18=38\)( bđt AM-GM và giả thiết x + y ≥ 6 )
=> P ≥ 19
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x=\frac{12}{x}\\y=\frac{16}{y}\\x+y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy MinP = 19
Ta có: \(P=3x+2y+\frac{6}{x}+\frac{8}{y}=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)\)
Vì \(\frac{3}{2}x+\frac{3}{2}y=\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6;\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\Rightarrow P\ge9+6+4=19\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}x+y=6\\\frac{3x}{2}=\frac{6}{x}\\\frac{y}{2}=\frac{8}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy GTNN của P là 19
1/ Với số dương ta luôn có \(\frac{x}{y}+\frac{y}{x}\ge2\) (Cauchy hoặc quy đồng chuyển vế sẽ chứng minh được dễ dàng). Ta cần chứng minh:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2.\frac{x}{y}.\frac{y}{x}+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (1)
Đặt \(\frac{x}{y}+\frac{y}{x}=a\ge2\) thì (1) trở thành:
\(a^2+2\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\) (2)
Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-1>0\\a-2\ge0\end{matrix}\right.\Rightarrow\left(a-1\right)\left(a-2\right)\ge0\)
\(\Rightarrow\left(2\right)\) đúng, vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y\)
2/ \(B=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)
\(B=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2-6y+12\right)-36+2045\)
\(B=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2009\)
\(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)
Do \(\left\{{}\begin{matrix}\left(x-1\right)^2+2\ge2\\\left(y+3\right)^2+3\ge3\end{matrix}\right.\)
\(\Rightarrow B\ge2.3+2009=2015\)
\(\Rightarrow B_{min}=2015\) khi \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Ta chứng minh với x,y,z > 0 thì:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (*)
Vì \(VT\circledast=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{a}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}=3+2+2+2=9\)
Vậy (*) đúng. Dấu "=" khi a = b = c
Áp dụng ta có:
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{1+x+1+y+1+z}=\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu "=" khi x = y = z = 1
Ta chứng minh BĐT phụ sau: \(\frac{1}{1+x}\ge-\frac{1}{4}x+\frac{3}{4}\Leftrightarrow\frac{\left(x-1\right)^2}{4\left(x+1\right)}\ge0\) (đúng với mọi x > 0)
Tương tự với hai BĐT còn lại và cộng theo vế ta được:
\(A\ge-\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\ge-\frac{1}{4}.3+\frac{9}{4}=\frac{3}{2}\)
Vậy min A = 3/2 khi x = y = z =1
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8
\(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
\(P+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}\)
\(P+3=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)\)
\(2\left(P+3\right)=\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge9\)
\(\Rightarrow P+3\ge\frac{9}{2}\Leftrightarrow P\ge\frac{3}{2}\)
\("="\Leftrightarrow x=y=z\)