Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+4y^2-2xy+4x-10y+2020.\)
\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)
\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)
\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)
\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)
\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(B=8x^2+y^2-4xy-12x+2y+30\)
\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)
\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)
\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)
\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)
\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)
A=−x2−12x+3=−(x2+12x+36)+39=−(x+6)2+39≤39
Vậy GTLN của A là 39 khi x = -6
B=7−4x2+4x=−(4x2−4x+1)+8=−(2x−1)2+8≤8
Vậy GTLN của B là 8 khi x =
~Hok tốt~
Áp dụng BĐT AM-GM ta có:
\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)
Áp dụng BĐT Bunhiacopxki ta có:
\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)
\(\Leftrightarrow A\ge3\)
Dấu " = " xảy ra <=> \(x=y=z=1\)
Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)
\(x-y=2\Leftrightarrow x=y+2\)
\(P=x^2+y^2+2020=\left(y+2\right)^2+y^2+2020=2y^2+4y+2024=2\left(y+1\right)^2+2022\ge2022\)
Dấu \(=\)khi \(y+1=0\Leftrightarrow y=-1\)