Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^x}{2^{x+y}}=8=>\frac{\left(2^2\right)^x}{2^x.2^y}=8=>\frac{2^{2x}}{2^x.2^y}=8=>\frac{1}{2^y}=8=>2^y=\frac{1}{8}\)
\(=>2^y=\frac{1}{2^3}=2^{-3}=>y=-3\)\(\frac{9^{x+y}}{3^y}=243=>\frac{9^x.9^y}{3^y}=243=>\frac{9^x.\left(3^2\right)^y}{3^y}=243=>\frac{9^x.3^{2y}}{3^y}=243\)
\(=>\frac{9^x.3^y.3^y}{3^y}=243=>\left(3^2\right)^x.3^y=243=>3^{2x}.3^y=243=>3^{2x+y}=3^5=>2x+y=5\)
\(=>2x=5-y=5-\left(-3\right)=8=>x=4\)
Vậy x=4;y=-3
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
Ta có \(x^3+2x^2\left(4y-1\right)-4xy^2-9y^3-f\left(x\right)=-5x^3+8x^2y-4xy^2-9y^3\)
=> \(\left(x^3+8x^2y-2x^2-4xy^2-9y^3\right)-f\left(x\right)=-5x^3+8x^2y-4xy^2-9y^3\)
=> \(-f\left(x\right)=\left(-5x^3+8x^2y-4xy^2-9y^3\right)-\left(x^3+8x^2y-2x^2-4xy^2-9y^3\right)\)
=> \(-f\left(x\right)=-5x^3+8x^2y-4xy^2-9y^3-x^3-8x^2y+2x^2+4xy^2+9y^3\)
=> \(-f\left(x\right)=-6x^3\)
=> \(f\left(x\right)=6x^3\)
Khi f (x) = 0
=> \(6x^3=0\)
=> \(x^3=0\)(vì 6 \(\ne\)0)
=> x = 0
Vậy f (x) có 1 nghiệm là x = 0.
nếu bn ko thấy đc hình ảnh, bn vào thống kê hỏi đáp của mik để tìm ảnh nhé
#Châu's ngốc
a)Đặt:x/3=3.K
y/4=4.K
Ta có x.y=3k.4k=12.k^2=192=>K^2=192:12=16
k^2=16=>k=4 hoặc k=-4
Với k=4 thì x/3=4 => x=12 ; y/4=4 => y=16
Với k=-4 thì x/3=-4 =>x=-12 ; y/4=-4 =>y=-16
Còn câu b thì bạn kia làm đúng rùi
b)\(\frac{x}{5}=\frac{y}{4},x^2-y^2=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{4}=\frac{x^2-y^2}{5^2-4^2}=\frac{1}{9}\)
\(\frac{x}{5}=\frac{1}{9}\Rightarrow x=\frac{1}{9}\times5=\frac{5}{9}\)
\(\frac{y}{4}=\frac{1}{9}\Rightarrow y=\frac{1}{9}\times4=\frac{4}{9}\)
Vậy: \(x=\frac{5}{9};y=\frac{4}{9}\)
\(x-y=1\Leftrightarrow x=1+y\\ P=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\\ P=x^2+xy+y^2-xy\\ P=x^2+y^2=y^2+2y+1+y^2\\ P=2\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow y=-\dfrac{1}{2}\Leftrightarrow x=1-\dfrac{1}{2}=\dfrac{1}{2}\)
x3 - y3 - xy
= (x - y)(x2 + xy + y2) - xy
Thay x - y = 1 vào, ta đc:
= x2 + xy + y2 - xy
= x2 + y2
Ta có: x2 + y2 có giá trị nhỏ nhất khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)