Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{1}{3}x=-2t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{x}{-2}=\dfrac{t}{\dfrac{1}{3}}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}=\dfrac{x+y+z-2t}{2+3+4-2\cdot\dfrac{-1}{3}}=\dfrac{4}{\dfrac{29}{3}}=\dfrac{12}{29}\)
Do đó: x=24/29; y=36/29; z=48/29; t=-4/29
\(\dfrac{x}{2}+\dfrac{y}{3}-z+t=\dfrac{12}{29}+\dfrac{12}{29}-\dfrac{48}{29}+\dfrac{-4}{29}=-\dfrac{28}{29}\)
\(\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\)
\(\dfrac{x}{z}=\dfrac{4}{3}\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)
\(\Rightarrow\left\{{}\begin{matrix}x=50.4\\y=50.6\\z=50.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=200\\y=300\\z=150\end{matrix}\right.\)
a) Theo đề bài ta có:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\) và \(x-y+z=50\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)
\(\dfrac{x}{4}=50\Rightarrow x=50.4=200\)
\(\dfrac{y}{6}=50\Rightarrow y=50.6=300\)
\(\dfrac{z}{3}=50\Rightarrow z=50.3=150\)
Vậy \(x=200,y=300,z=150\)
a) Ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}\) và x-y=4
Áp dụng tính chất dãy tỉ số = nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=-\dfrac{4}{-2}=2\)
Từ:
\(\dfrac{x}{3}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{5}=2\Rightarrow y=5\cdot2=10\)
Vậy....
BIK CHẾT LIỀN