K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²

* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)

* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :

........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)

* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

20 tháng 8 2016

kho that

20 tháng 8 2016

60 = 3.4.5 
Ta cần c/m xyz chia hết cho 3; 4 và 5. 
Xét x² + y² = z² 

* Giả sử cả x; y và z đều không chia hết cho 3. 
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1. 
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 ) 
Vô lí vì z² ≡ 1 ( mod 3 ) 
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠) 

* Giả sử cả x; y và z không chia hết cho 4. 
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3. 
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1. 
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại } 
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4 
*TH 3 : Có 1 số chẵn và 2 số lẻ. 
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )} 
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau : 

........z...............x...........z-... 
....4m+1.......4n+1.........4(m-n)....... 
....4m+3.......4n+1.......4(m-n)+2....... 
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn. 

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣) 

* Giả sử cả x; y và z không chia hết cho 5. 
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1. 
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại } 
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại } 
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại } 

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦) 
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

12 tháng 9 2016

Lớp 1chuwa học mí cái nè nhoa !!!!!! ^_^

4 tháng 2 2017

BĐT Cosi cho 2 số a,b >0: 
a + b >= 2căn(ab) 

di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 ) 

<=> a + b - 2√(ab) ≥ 0 

<=> a + b ≥ 2√(ab) 
dau "=" xay ra khi √a - √b = 0 <=> a = b 
 

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

4 tháng 2 2017

(a+b)/2 >=Cab(C là căn) 
a+b>=2*Cab 
(a+b)^2>=4*ab 
a^2+2ab+b^2-4ab>=0 
a^2-2ab+b^2>=0 
(a-b)^2>=0(luôn đúng) 
vây ta được điều cm 
Đây chính là bất đẳng thức côsi 2 số mà bạn 

11 tháng 4 2021

aaaakk

28 tháng 7 2020

ủa đây là toám lớp 1 hả anh

28 tháng 7 2020

cauchy phần mẫu @@

30 tháng 1 2016

x + 2 chia hết cho x - 3

=> x - 3 + 5 chia hết cho x - 3

Mà x - 3 chia hết cho x - 3

=> 5 chia hết cho x - 3

=> x - 3 thuộc Ư (5) = {-5; -1; 1; 5}

=> x thuộc {-2; 2; 4; 8}.

29 tháng 7 2020

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

29 tháng 7 2020

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1