Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)
khi đó, ta có: (x - z)3 = (2012k - 2014k)3 = (-2k)3 = -8k3
8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3
=> (x - z)3 = 8(x - y)2(y - z)
Giải :
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2 (1)
(2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2 (2)
Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2
vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2 và z < x < y
ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH
TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4
TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3
TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2
nhớ cho mik nha
Ta có:
\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)
Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)
Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)
Với \(z-5=0\)\(\Rightarrow.....\)
B tự làm nốt nhé
\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)
\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)
\(\Rightarrow x=2013;y=2014;z=2015\)
Đến đây bạn tự thay vào rồi tính nhé!
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)