\(x^2+z^2=y^2+t^2.\)Chứng minh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
          = (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
          = x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
 (Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2 
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ

11 tháng 3 2017

Ta có : 

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

Do đó M ko nhận giá trị nguyên

11 tháng 3 2017

mình biết làm nhưng ghi phân  số mỏi tay quá

đề bài phải là x,y,z,t nguyên dương. 
Vì nếu cho x=z=1;y=t=0 thì thỏa mãn: x²+y²=z²+t² 
nhưng x+y+z+t = 2 là số nguyên tố. 

với x,y,z,t là số nguyên dương => x+y+z+t >=4 
giả sử x+y+z+t là số nguyên tố 
ta có x+y+z+t >= 4 => x+y+z+t lẽ 
=> trong x,y,z,t có một số lẽ số lẽ ( 1 hoặc 3 số lẽ ) 
* trường hợp 1: có 1 số lẽ, giả sử là x => x²+y² lẽ , còn z²+t² chẳn, vô lý vì chúng bằng nhau 
* trường hợp 2: có 3 số lẽ, 1 số chẳn, giả sử x chẳn. => x²+y² lẽ , còn z²+t² chẳn, vô lý. 
mọi trường hợp đều dẫn kết điều mâu thuẩn , vậy giả thiết phản chứng là sai và bài toán được chứng minh.

28 tháng 3 2022

refer

https://olm.vn/hoi-dap/detail/1303479279140.html

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU

4 tháng 3 2018

Đề sai kìa bạn , xem lại phân số : (y+t/x+y)^2014

4 tháng 3 2018

vậy bn làm theo cái đúng của bn,mong bn giúp mk

22 tháng 2 2017

Áp dụng TCDTSBN ta có :

\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)

\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)

\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)

Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)