Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x,y,z \(\in\)Z ,nên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow A>1\)
\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)
\(\Rightarrow B>1\)
Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1
Do đó A < 2.Vậy 1 < A < 2
=> A có giá trị là 1 số không thuộc tập hợp số nguyên
Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
= (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
= x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
(Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ
đề bài phải là x,y,z,t nguyên dương.
Vì nếu cho x=z=1;y=t=0 thì thỏa mãn: x²+y²=z²+t²
nhưng x+y+z+t = 2 là số nguyên tố.
với x,y,z,t là số nguyên dương => x+y+z+t >=4
giả sử x+y+z+t là số nguyên tố
ta có x+y+z+t >= 4 => x+y+z+t lẽ
=> trong x,y,z,t có một số lẽ số lẽ ( 1 hoặc 3 số lẽ )
* trường hợp 1: có 1 số lẽ, giả sử là x => x²+y² lẽ , còn z²+t² chẳn, vô lý vì chúng bằng nhau
* trường hợp 2: có 3 số lẽ, 1 số chẳn, giả sử x chẳn. => x²+y² lẽ , còn z²+t² chẳn, vô lý.
mọi trường hợp đều dẫn kết điều mâu thuẩn , vậy giả thiết phản chứng là sai và bài toán được chứng minh.
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c