K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

5 tháng 9 2023

ck giúp mình với

 

Bài toán 3

a. 25 - y^2 = 8(x - 2009)

Ta có thể viết lại như sau:

y^2 - 8(x - 2009) + 25 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 2009 và y = 0.

b. x^3 y = x y^3 + 1997

Ta có thể viết lại như sau:

x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997

Ta có thể thấy rằng x và y phải có giá trị đối nhau.

Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = y = 998.

c. x + y + 9 = xy - 7

Ta có thể viết lại như sau:

x - xy + y + 16 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 8 và y = 12.

Bài toán 4

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 2, ta có:

x1.x2 + x2.x3 = 0

Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.

Bước đệm

Giả sử rằng khi n = k, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Bước kết luận

Xét số tự nhiên n = k + 1.

Ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1

Theo giả thuyết, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.

Như vậy, ta có:

x1.x2 + x2.x3 + ...+ xn.x1   shareGoogle it
5 tháng 9 2023

???

bn lấy nó đâu ra dz batngo

24 tháng 12 2018

Ta có:7(x+y+z) chia hết cho 7 nên \(xyz⋮7\)

Mà 7 là số nguyên tố nên trong ba số x,y,z luôn có một số chia hết cho 7

Không mất tính tổng quát ta giả sử x chia hết cho 7 mà x là số nguyên tố nên x=7

Thay vào ta được:\(7\left(7+y+z\right)=7yz\)

\(\Rightarrow7+y+z=yz\Rightarrow yz-y-z+1=8\Rightarrow\left(y-1\right)\left(z-1\right)=8=1.8=2.4=\left(-1\right).\left(-8\right)\)

\(=\left(-2\right).\left(-4\right)\)

Bạn tự lập bảng xét nha,cuối cùng nếu có x,y,z thỏa mãn thì phải vậy x,y,z là hoán vị nha....