Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(y=4x^3-x^4=x^3\left(4-x\right)=x.x.x.\left(4-x\right)\).
Vì vậy: \(3y=x.x.x.\left(12-4x\right)\).
Với \(0\le x\le4\) thì \(\left\{{}\begin{matrix}x\ge0\\12-4x\ge0\end{matrix}\right.\).
Áp dụng bất đẳng thức cô si cho bốn số: x,x,x, 12 - 3x ta có:
\(x.x.x.\left(12-3x\right)\le\left(\dfrac{x+x+x+12-3x}{4}\right)^4=81\).
Dấu bằng xảy ra khi: \(x=12-3x\)\(\Leftrightarrow4x=12\)\(\Leftrightarrow x=3\).
Như vậy: \(3y\le81\) \(\Leftrightarrow y\le27\) nên max của y bằng 27 khi x = 3.
- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).
1) b)
Phương trình trên tương đương
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)
ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)
\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(-2=x^3+4x^2-2x^2-8x-33x-132\)
\(x^3+2x^2-41x-130=0\)
\(x^3+5x^2-3x^2-15x-26x-130=0\)
\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)
\(\left(x^2-3x-26\right)\left(x+5\right)=0\)
\(\Rightarrow x=-5\)(Loại)
\(x^2-3x-26=0\)
Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác
\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)
\(x_1=\dfrac{3-\sqrt{113}}{2}\)
\(x_2=\dfrac{3+\sqrt{113}}{2}\)
Phương trình có 2 nghiệm trên
5) 0<a<b, ta có: a<b
<=> a.a<a.b
<=>a2<a.b
<=>\(a< \sqrt{ab}\)(1)
- BĐT Cauchy:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)
\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)
Dấu = xảy ra khi a=b=0 mà 0<a<b
=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)
- 0<a<b, ta có: a<b<=> a+b<b+b
\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)
Từ (1), (2), (3), ta có đpcm
a/ \(y=\dfrac{3x}{4}+\dfrac{x}{4}+\dfrac{1}{x}\ge\dfrac{3x}{4}+2\sqrt{\dfrac{x}{4}.\dfrac{1}{x}}\ge\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
\(\Rightarrow y_{min}=\dfrac{5}{2}\) khi \(x=2\)
b/ \(y=\dfrac{x^3}{2}+\dfrac{x^3}{2}+\dfrac{1}{x^2}+\dfrac{1}{x^2}+\dfrac{1}{x^2}\ge5\sqrt[5]{\dfrac{x^3}{2}.\dfrac{x^3}{2}.\dfrac{1}{x^2}.\dfrac{1}{x^2}.\dfrac{1}{x^2}}=\dfrac{5}{\sqrt[5]{4}}\)
\(\Rightarrow y_{min}=\dfrac{5}{\sqrt[5]{4}}\) khi \(x=\sqrt[5]{2}\)
\(\left(x^2+\dfrac{8}{27x}+\dfrac{8}{27x}\right)+\left(y^2+\dfrac{8}{27y}+\dfrac{8}{27y}\right)+\dfrac{11}{27}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\ge3\sqrt[3]{\dfrac{8^2}{27^2}}+3\sqrt[3]{\dfrac{8^2}{27^2}}+\dfrac{11}{27}.\dfrac{4}{x+y}\)
\(\ge\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{11}{9}=\dfrac{35}{9}\)
ta có : \(y=\dfrac{3}{x}+\dfrac{12}{1-2x}=\left(\dfrac{3}{x}-6\right)+\left(\dfrac{12}{1-2x}-12\right)+18\)
\(y=\dfrac{3-6x}{x}+\dfrac{24x}{1-2x}+18=\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}+18\)
vì \(0< x< \dfrac{1}{2}\) \(\Rightarrow\dfrac{3\left(1-2x\right)}{x}>0\) và \(\dfrac{24x}{1-2x}>0\)
áp dụng bất đẳng thức AM - GM cho 2 số : \(\dfrac{3\left(1-2x\right)}{x}>0\) và \(\dfrac{24x}{1-2x}>0\)
ta có : \(\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}\ge2\sqrt{\dfrac{3\left(1-2x\right)}{x}.\dfrac{24x}{1-2x}}=12\sqrt{2}\)
\(\Rightarrow\) \(y=\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}+18\ge18+12\sqrt{2}\)
\(\Rightarrow\) giá trị nhỏ nhất của \(y\) là \(18+12\sqrt{2}\)
dấu " = " xảy ra khi và chỉ khi \(\dfrac{3\left(1-2x\right)}{x}=\dfrac{24x}{1-2x}\)
\(\Leftrightarrow3\left(1-2x\right)^2=24x^2\) \(\Leftrightarrow3\left(1-4x+4x^2\right)=24x^2\)
\(\Leftrightarrow3-12x+12x^2=24x^2\Leftrightarrow12x^2+12x-3=0\)
\(\Delta'=\left(6\right)^2-12.\left(-3\right)=36+36=72>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x=\dfrac{-6+\sqrt{72}}{12}=\dfrac{-1+\sqrt{2}}{2}\) ; \(x=\dfrac{-6-\sqrt{72}}{12}=\dfrac{-1-\sqrt{2}}{2}\)
vậy giá trị nhỏ nhất của \(y\) là \(18+12\sqrt{2}\)
và dấy " = " xảy ra khi và chỉ khi \(x=\dfrac{-1\pm\sqrt{2}}{2}\)
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)
\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)
\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)
Đẳng thức \(y=25\) xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)
Hay \(x=\dfrac{2}{5}\)
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)
Đoạn đầu bạn đã biến đổi nhầm một chút nhé:
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)