\(\left|x-z\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Lời giải

áp dụng

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\) đẳng thức khi ab>=0 nghĩa là a, b cùng "dấu"

\(VP=\left|x-y\right|+\left|y-z\right|\ge\left|\left(x-y\right)+\left(y-z\right)\right|=\left|x-z\right|=VT\)

\(\Rightarrow\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|\)

Đẳng thức khi (x-y)(y-z)>=0

26 tháng 12 2017

Để ý đẳng thức : \(\dfrac{xy}{\left(y-z\right)\left(z-x\right)}+\dfrac{yz}{\left(z-x\right)\left(x-y\right)}+\dfrac{xz}{\left(x-y\right)\left(y-z\right)}=\dfrac{xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)

Ta luôn có: \(\left(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}\right)^2\ge0\) ;\(\forall x;y;z\)

\(\Leftrightarrow\dfrac{x^2}{\left(y-z\right)^2}+\dfrac{y^2}{\left(z-x\right)^2}+\dfrac{z^2}{\left(x-y\right)^2}\ge-2\sum\dfrac{xy}{\left(y-z\right)\left(z-x\right)}=2\)

(ĐPcm)

Dấu = xảy ra khi \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)

29 tháng 12 2017

Thêm 1 ý tưởng đc buff từ cách trước :))

\(BDT\LeftrightarrowΣ\dfrac{x^2}{\left(y-z\right)^2}-2=\left(Σ\dfrac{x}{y-z}\right)^2-2Σ\dfrac{xy}{\left(y-z\right)\left(z-x\right)}-2\)

\(=\dfrac{\left(Σ\left(x^3-x^2y-x^2z+xyz\right)\right)^2}{\prod\left(x-y\right)^2}-2\dfrac{Σ\left(x^2y-x^2z\right)}{\prod\left(x-y\right)}-2\)

\(=\dfrac{\left(Σ\left(x^3-x^2y-x^2z+xyz\right)\right)^2}{\prod\left(x-y\right)^2}\ge0\)

11 tháng 7 2017

@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi

12 tháng 7 2017

thua :v

BĐT \(\Leftrightarrow\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}\le1+\frac{x}{z}+\frac{z}{x}+1\)

Xét BĐT tổng quát : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng )

Nên \(\frac{a}{b}+\frac{b}{a}\ge2\)

Khi đó ta có BĐT trên đúng.

@ Em không chắc vì em mới đọc cái này ạ, có gì sai mn chỉ ạ !

29 tháng 12 2019

ok cảm ơn ạ

21 tháng 6 2017

1. Theo BĐT AM - GM, ta có:

\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)

Do đó BĐT ban đầu sẽ đúng nếu ta C/m được

\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)

Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)

( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )

22 tháng 6 2017

Hơi lâu đúng không mk giải bài 2 cho