Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
Áp dụng bđt AM-GM ta có:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)
Cộng từng vế các bđt trên ta được:
\(P+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)
TL ;
\(A=\frac{\left(x-1\right)^2}{ }\) + \(\frac{\left(y-1\right)^2}{x}\)+ \(\frac{\left(GTNN-1^2\right)}{y}\)
\(A=\left(x-1\right)^2+y2+GTNN+1_{ }\)
\(A=x+2^2:xyz+2^2\frac{x}{y}\)
\(A=x^2xy1zx\)
\(A=x^2+y6\)
\(GTNN=12x\)
\(A=\dfrac{2x^2}{2x+2yz}+\dfrac{2y^2}{2y+2zx}+\dfrac{2z^2}{2z+2xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
\(A\ge\dfrac{2x^2}{x^2+1+y^2+z^2}+\dfrac{2y^2}{y^2+1+z^2+x^2}+\dfrac{2z^2}{z^2+1+x^2+y^2}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
\(A\ge\dfrac{2\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+1}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
Đặt \(x^2+y^2+z^2=a>0\)
\(\Rightarrow A\ge\dfrac{2a}{a+1}+\dfrac{9}{8a}=\dfrac{2a}{a+1}+\dfrac{9}{8a}-\dfrac{15}{8}+\dfrac{15}{8}\)
\(\Rightarrow A\ge\dfrac{\left(a-3\right)^2}{8a\left(a+1\right)}+\dfrac{15}{8}\ge\dfrac{15}{8}\)
\(A_{min}=\dfrac{15}{8}\) khi \(a=3\) hay \(x=y=z=1\)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Phải là giá trị nhỏ nhất nha bạn
Áp dụng BĐT Cô-si dạng Engel
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\) \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
áp dụng bất đẳng thức cô si ta có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)
36 x 2 y − 60 x 2 + 25 y = 0 36 y 2 z − 60 y 2 + 25 z = 0 36 z 2 x − 60 z 2 + 25 x = 0 ⇔ y = 60 x 2 36 x 2 + 25 z = 60 y 2 36 y 2 + 25 x = 60 z 2 36 z 2 + 25 ⇒ x , y , z ≥ 0
Nhận thấy x = y = z = 0 là một nghiệm của hệ phương trình
Xét x > 0; y > 0; z > 0 áp dụng bất đẳng thức Cosi cho hai số không âm ta có:
36 x 2 + 25 ≥ 2 36 x 2 .25 = 60 | x | ≥ 60 x ⇒ y ≤ x
Chứng minh tương tự, ta được z ≤ y ; x ≤ z ⇒ x ≤ z ≤ y ≤ x ⇒ x = y = z
Thay vào phương trình (1) ta được 36 x 3 – 60 x 2 + 25 x = 0 ⇔ x = 5 6
hay x = y = z = 5 6
Suy ra giá trị nhỏ nhất của A = x + y + z = 0 (khi x = y = z = 0)
Đáp án:A